AD-A230 752 FILE COPY ### DISTRIBUTION STATEMENT X Approved for public release, Distribution Unlimited DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY # AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio 45433 91 1 .3 111 # APPLICATION OF INFLUENCE DIAGRAMS IN IDENTIFYING SOVIET SATELLITE MISSIONS THESIS Cary C. Chun Captain, USAF AFIT/GSO/ENS/90D-7 Approved for public release; distribution unlimited #### THESIS APPROVAL STUDENT: Captain Cary C. Chun CLASS: GSO 90-D THESIS TITLE: Application of Influence Diagrams In Identifying Soviet Satellite Missions DEFENSE DATE: 21 NOV 90 COMMITTEE: NAME/DEPARTMENT SIGNATURE Advisor/co-Advisor Major Bruce Morlan/ENS N/A Bh. Malan (circle appropriate role) co-Advisor/ENS Representative (circle appropriate role) Reader Lt. Col. James Robinson/ENS # APPLICATION OF INFLUENCE DIAGRAMS IN IDENTIFYING SOVIET SATELLITE MISSIONS #### THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science (Space Operations) Cary C. Chun, M.S. Captain, USAF December, 1990 | | | | ı | | | |-------------------|-----------------|---|----------|--|--| | Accesi | on For | | | | | | | CRA&I | 8 |] | | | | DTIC | TAB | Ē | ī | | | | Unann | our.ced | Ē | <u>.</u> | | | | Justific | cation | | -
 | | | | By | | | | | | | Availabily Cocles | | | | | | | Dist | Avaii a
Spuc | | 1 | | | | Λ | | | | | | | 11-1 | | | | | | Approved for public release; distribution unlimited #### Acknowledgments I wish to thank my thesis advisor Major Bruce Morlan for helping me when the light at the end of the tunnel turned-out to be a train. His guidance throughout this effort prevented me from straying onto the wrong paths and led me to the completion of this research. Further thanks goes to my reader, Lt. Col. James Robinson, for adopting me at the last minute and providing comments essential to finalizing this document. I also wish to thank Mr. Nick Johnson for taking time out of his busy schedule to answer my many questions on Soviet satellite systems. Without the contribution of his vast knowledge on the Soviet space program and Teledyne Brown's publication of *The Soviet Year in Space*, this research effort would not have been possible. Thanks also goes to Major T.S. Kelso and Captain Ken Norton for providing their expertise in satellite identification. I wish to thank my family and many friends for their constant support and encouragement throughout my AFIT experience. Finally, and most importantly, I wish to thank my beautiful girlfriend Linda for all her love, devotion, and patience. Cary C. Chun # Table of Contents | | | | Page | |--------|-------------|-------------------------------------|-------| | Ackno | owledgment | s | . ii | | Table | of Content | s | . iii | | List o | of Tables . | | . vii | | List o | of Figures | | . x | | Abstr | act | | . xi | | I. | Introducti | on | . 1 | | | 1.1 | Background | . 1 | | | 1.2 | Objective | . 2 | | II. | Literature | Review | . 3 | | | 2.1 | Introduction | . 3 | | | 2.2 | Influence Diagramming | . 3 | | | | 2.2.1 Overview | . 3 | | | | 2.2.2 Purpose | . 3 | | | | 2.2.3 Development and Formalization | . 5 | | | | 2.2.4 Application | . 8 | | | 2.3 | Satellite Mission Prediction | . 10 | | | 2.4 | Summary | . 11 | | III. | Methodolo | ogy | . 12 | | | 3.1 | Introduction | . 12 | | | 3.2 | Data Anailability | . 12 | | | | | | Page | |-----|-------------|----------------------|-----------------------------------|------| | | 3.3 | Soviet Satellite Mis | ssions | 12 | | | 3.4 | Influence Diagram | Model | 13 | | | 3.5 | Summary | | 14 | | IV. | Satellite I | ata and Mission De | escriptions | 15 | | | 4.1 | Introduction | | 15 | | | 4.2 | Historical Data . | | 15 | | | 4.3 | Soviet Satellite Mi | ssions | 16 | | | | 4.3.1 Photograp | hic Reconnaissance Satellites | 17 | | | | 4.3.2 Photograp | hic Reconnaissance Orbits | 18 | | | | 4.3.3 Communi | cation Satellites | 19 | | | | 4.3.4 Navigation | n Satellites | 22 | | | | 4.3.5 Geodetic | Satellites | 25 | | | | 4.3.6 Meteorolo | gy Satellites | 25 | | | | 4.3.7 Remote S | ensing Satellites | 26 | | | | 4.3.8 Scientific | Satellites | 29 | | | | 4.3.9 Early Wa | rning Satellite Orbits | 30 | | | | 4.3.10 Electronic | : Intelligence Satellites (ELINT) | 31 | | | | 4.3.11 Ocean Su | rveillance Satellites | 32 | | | | 4.3.12 Minor Mi | litary Satellites | 33 | | | | 4.3.13 Co-orbita | l Anti-Satellite | 34 | | | | 4.3.14 Manned S | Space Program | 35 | | | | 4.3.15 Planetary | Satellites | 36 | | | | 4.3.16 Launch V | Cehicle Testing | 38 | | | 1 1 | Summanu. | | 20 | | | | | Page | |------|------------|---|------| | V. | Influence | Diagram Model | . 40 | | | 5.1 | Introduction | . 40 | | | 5.2 | Influence Diagram Overview | . 40 | | | 5.3 | Predictive Variables | . 43 | | | 5.4 | Probabilistic Relationships | . 45 | | | 5.5 | Influence Diagram Model | . 47 | | | 5.6 | Summary | . 49 | | VI. | Discrete a | nd Continuous Variable Analysis | . 50 | | | 6.1 | Introduction | . 50 | | | 6.2 | Discrete Variables | . 50 | | | 6.3 | Continuous Variables | . 58 | | | | 6.3.1 Probability Density Function | . 59 | | | | 6.3.2 Determination of Variable Classes | . 65 | | | 6.4 | Discretizing Continuous Variables | . 78 | | | | 6.4.1 Considerations | . 78 | | | | 6.4.2 Class Interval Determinations | . 80 | | | 6.5 | Probability Distribution Calculations | . 85 | | | 6.6 | Summary | . 85 | | VII. | Validation | and Results | . 88 | | | 7.1 | Introduction | . 88 | | | 7.2 | Solving the Model | . 88 | | | | 7.2.1 Prior Probability Formulation | . 89 | | | | 7.2.2 Arc Reversal from Known Chance Node | . 89 | | | 7.3 | Model Validation and Results | . 96 | | | 7 1 | Summary | 100 | | | | Page | |------------------|---|------| | VIII. Conclusion | ns and Recommendations | 101 | | 8.1 | Introduction | 101 | | 8.2 | Conclusions | 101 | | 8.3 | Recommendations | 102 | | 8.4 | Summary | 103 | | Appendix A. | Model Probability Distribution | 104 | | A.1 | Inclination Given Mission | 104 | | A.2 | Apogee Given Mission | 104 | | A.3 | Perigee Given Mission | 106 | | A.4 | Argument of Perigee Given Mission | 107 | | A.5 | No of Payloads Given Mission | 107 | | A.6 | Geosynchronous Position Given Apogee | 108 | | A.7 | Booster Given Apogee | 108 | | A.8 | Launch Site Given Inclination and Booster | 109 | | Appendix B. | Independent Model Distribution Additions | 112 | | B.1 | Booster Given Mission | 112 | | B.2 | Launch Site Given Mission | 112 | | Appendix C. | Test Data | 113 | | C.1 | Test Data | 113 | | Bibliography . | · · · · · · · · · · · · · · · · · · · | 114 | | V:+- | | 110 | # List of Tables | Table | | Page | |-------|--|------| | 1. | Photographic Reconnaissance Orbits | 18 | | 2. | Photographic Satellite Launch Sites and Boosters | 19 | | 3. | Communication Satellite Orbits | 22 | | 4. | Communication Satellite Launch Sites and Boosters | 23 | | 5. | Navigation Satellite Orb. | 24 | | 6. | Navigation Satellite Launch Sites and Boosters | 24 | | 7. | Geodetic Satellite Orbits | 25 | | 8. | Geodetic Satellite Launch Sites and Boosters | 25 | | 9. | Meteorological Satellite Orbits | 26 | | 10. | Meteorological Satellite Launch Sites and Boosters | 26 | | 11. | Remote Sensing Satellite Orbits | 28 | | 12. | Remote Sensing Satellite Launch Sites and Boosters | 29 | | 13. | Scientific Satellite Orbits | 30 | | 14. | Scientific Satellite Launch Sites and Boosters | 30 | | 15. | Early Warning Satellite Orbit | 31 | | 16. | Early Warning Satellite Launch Site and Booster | 31 | | 17. | Electronic Intelligence Satellite Orbits | 32 | | 18. | ELINT Satellite Launch Sites and Boosters | 32 | | 19. | Ocean Reconnaissance Satellite Orbits | 33 | | 20. | Ocean Reconnaissance Satellite Launch Sites and Boosters | 33 | | 21. | Minor Military Satellite Orbits | 34 | | 22. | Minor Military Launch Sites and Boosters | 34 | | 23. | Co-orbital ASAT Launch Site and Booster | 34 | | 24. | Manned Program Orbits | 37 | | Table | | Page | |-------|---|------| | 25. | Manned Program Launch Site and Boosters | 37 | | 26. | Military versus Non-military Soviet Satellite Systems | 39 | | 27. | Multiple Payload Mission Combinations | 46 | | 28. | Discrete Model Variables and Their Classes | 51 | | 29. | Prior Probabilities | 52 | | 30. | Likelihood Probabilities | 53 | | 31. | Joint Probabilities | 56 | | 32. | Preposterior Probabilities | 56 | | 33. | Posterior Probabilities | 57 | | 34. | Mission Probabilities Comparison | 58 | | 35. | Continuous Model Variables | 59 | | 36. | Sample Inclination Data | 60 | | 37. | Frequency Tabulation | 61 | | 38. | Chi-Square Test for Relative Goodness-of-fit | 64 | | 39. | Type I and Type II Errors | 68 | | 40. | Error Effects From Critical Value Adjustment | 70 | | 41. | Possible Actions Based on Perigee Information | 72 | | 42. | Prior Probability of Mission | 73 | | 43. | Likelihood Probabilities for Perigee | 73 | | 44. | Decision Alternatives | 74 | | 45. | Value Table for Utility Node | 74 | | 46. | Posterior Distribution for Mission | 75 | | 47. | Value Table After MISSION Expectation | 76 | | 48. | Maximum Values for UTILITY Conditioned on PERIGEE | 76 | | 49. | Optimal Decision Policy Conditioned on PERIGEE | 76 | | 50. | Class Intervals for Inclination | 82 | | 51. | Class Intervals for Perigee | 84 | | Table | | Page | |-------|---|------| | 52. | Class Intervals for Apogee | 86 | | 53. | Class Intervals for Argument of Perigee | 87 | | 54. | Processing Time for Launch Site Arc Reversals | 91 | | 55. | Processing Time to Reveal Outcome of Launch Site | 91 | | 56. | Possible Inclinations and Boosters Given Site is
Plesetsk | 92 | | 57. | Possible Apogee Ranges Given Possible Boosters | 94 | | 58. | Possible Apogee Ranges Given Possible Boosters | 95 | | 59. | Validation Results | 98 | # List of Figures | Figure | | Page | |--------|--|------| | 1. | Graphic Representation of Nodes | 41 | | 2. | Nodal Relationships | 42 | | 3. | Node Reductions | 43 | | 4. | Influence Diagram Model | 48 | | 5. | Influence Diagram Example | 52 | | 6. | Probability Tree | 54 | | 7. | Arc Reversal | 55 | | 8. | Arc Reversal Between Y and Z | 55 | | 9. | Probability Tree After Arc Reversal | 57 | | 10. | Example Frequency Histogram | 61 | | 11. | Normal Probability Plot | 62 | | 12. | Graph for Kolmogorov-Smirnov Test | 65 | | 13. | Example Section of PDF Graph for Apogee | 66 | | 14. | Critical Area in Overlapping Density Functions | 67 | | 15. | Type I and Type II Errors | 69 | | 16. | Third Decision Alternative | 71 | | 17. | ASAT Decision Model Based on Perigee | 73 | | 18. | After Removal of MISSION by Expectation | 75 | | 19. | After Removal of ASAT by Maximization | 77 | | 20. | After Arc Reversals From Launch Site | 90 | | 21. | Independent Influence Diagram Model | 93 | | 22. | Models After Revealing Booster Outcome | 96 | #### Abstract This-study investigates the feasibility of applying influence diagrams to capture expert knowledge and incorporate decision theory to construct a Soviet satellite mission prediction model. Before a Soviet launch occurs, formulation of the model's prior probability distribution allows the input of expert knowledge and any available information. As the predictive variables of the model become known, the information is used to successively refine the estimate of the probable mission, thereby, reducing the uncertainty in the model. Discretizing is used to approximate continuous variables as discrete variables which successfully allows the combination of both variable types in a single influence diagram model. Results of testing and recommendations for continued research are presented. Superior of both variable for commendations of testing and recommendations of testing and recommendations for continued research are presented. Superior of both variable for the commendations of testing and recommendations recommendati ## APPLICATION OF INFLUENCE DIAGRAMS #### IN #### **IDENTIFYING SOVIET SATELLITE MISSIONS** #### I. Introduction #### 1.1 Background The United States must be able to quickly assess probable missions of foreign launches to react to any potential threat posed by such systems on U.S. national security. The Foreign Technology Division (FTD) at Wright-Patterson AFB, OH is an Air Force organization tasked with assessing foreign technological capabilities. An area of particular interest is Soviet satellite systems. FTD has suggested that thesis research be accomplished in the development of a model which can serve as a predictive tool in determining possible Soviet satellite missions. The Space Surveillance Center (SSC), located at the Cheyenne Mountain Complex in Colorado Springs, Colorado, is the Air Force organization primarily tasked with Soviet satellite identification. To operationally fulfill this mission, the SSC accomplishes the following: Detects, tracks, identifies, and maintains surveillance on all man-made objects in earth orbit through tasking requirements levied on sensors; maintains an accurate current catalog of all space objects; and provides orbital data on space objects to military, civilian, and scientific agencies. (28:1.11) Previous approaches to mission identification included expert systems and statistical analyses techniques. These models are discussed in the literature review. The models developed from this research used various techniques to predict possible satellite missions. The end result produced by each model was the identification of the most likely satellite mission. This thesis applied a different methodology and quantified the prediction by determining the specific probabilities associated with each possible mission area. The model evaluated information that was available before a particular launch occurred and formulated the possible prior probabilities associated with that specific launch. For example, prior information might include the knowledge that a Soviet communication satellite has exceed its lifetime and must be replaced or that the Soviets need to monitor the sudden occurrence of a localized crisis in a geographic location where they currently have no satellite coverage. Historical data was then be used to define the relationships that existed between the data variables. Once these relationships were defined, the necessary information was extracted to predict the possible missions associated with a launch. Quantification and augmentation of this information increased the predictive power of the model. Influence diagramming is a method which allows the simple construction of a model to illustrate the interrelationships which exist among variables by capturing an expert's knowledge and translating that knowledge into the model. A computer is then able to mathematically manipulate the data to extract the needed information in a format suitable to a decision maker. #### 1.2 Objective The objective of this research is to investigate the feasibility of applying influence diagrams to capture expert knowledge and incorporate decision theory to construct a Soviet satellite mission prediction model. This investigation specifically determines the feasibility of using revealed information to successively refine the estimate of the probable mission. #### II. Literature Review #### 2.1 Introduction The purpose of this literature review is to evaluate the tool, *influence diagrams*, to be used in the development of the predictive model and also evaluate the previous research accomplished in the area of satellite mission prediction. #### 2.2 Influence Diagramming - Overview. An influence diagram is a graphical network representation for modeling uncertain variables and decisions and explicitly revealing probabilistic dependence and the flow of information (24:871). The influence diagram provides a new language for communication betwoon the decision maker and the decision analyst and allows the creation of models that the received understand and mathematically concise for computer munipulation. This concept has developed into a modeling language which improves upon they in decision trees. Influence diagrams also provide a means of representing the important variables in the model and their interrelationships in a graph-theoretic manner. "Influence diagrams are hierarchial, containing a top level graph with data as the second level" (27:2). At the graph level, variables in the model are represented as nodes and the influences among those variables are represented by directed arcs. At the second level, the data is represented in a form which expresses the mathematical relationships existing among the variables. After modeling the problem as an influence diagram, probabilistic relationships can be manipulated at the graph level of the diagram (23:402). Using the computer to manipulate the data allows for assessment of the model in a form understandable to the decision maker. - 2.2.2 Purpose. Since its inception in 1976, influence diagrams have proven to be a very resourceful tool in the representation of probabilistic and decision anal- ysis models (24:871). Howard and Matheson described the concept as a new type of modeling description that is very easily comprehended even by an individual with a limited technical background. Influence diagramming is also formally structured mathematically for computer interpretation. Thus, influence diagramming "...forms a bridge between qualitative description and quantitative specification (7:721)." Howard and Matheson specified that the purpose of influence diagramming is to provide a technique which allows the decision maker to probabilistically model a decision and gather the necessary data, and then allow an automated system to complete the mathematical analysis. The authors demonstrated the procedures of model formulation and then presented the process of converting the influence diagram to a decision tree network. The decision tree network represents the problem in a form conducive for computer manipulation (7:740-762). In contrast to Howard and Matheson's contention that influence diagrams bridge the gap between humans and a computer system, Owen asserts that influence diagrams serve as a communication tool between a decision analyst and the decision maker. He describes this process as participative modeling versus interactive modeling (22:765). In the procedure of participative modeling, the influence diagram is constructed jointly with the decision analyst by first defining the value associated with the outcomes of the decision and then working backwards to identify the preceding variables which have influence on the outcomes (22:767). Additionally, in his research, Owen discovered that when a decision maker identified an influence among variables in a problem, the influence represented a probabilistic dependence. "Furthermore, influences that were identified as 'strong' represented, roughly speaking, more probabilistic dependence than influences that were identified as 'weak'" (22:767). This method of communication provided a means by which a decision maker untrained in the art of modeling could express his/her perception of the decision model to an analyst who could then interpret and measure the decision maker's intended relationship between the variables. However, Owen identified a deficiency in this problem representation method concerning the quantification of the existing influence because there is no "...mathematical expression corresponding to the intuitive notion of the strength of an influence, and in some instances the relative strengths of two influences may
be ambiguous (22:768)." In this instance, some formal method of quantifying the relationship must be applied to effectively measure and accurately represent the influences. Development and Formalization. The first attempts to formalize the concept of influence diagrams were accomplished by Howard and Matheson in 1981 as founders and directors of the Strategic Decisions Group. The Strategic Decision Group is a company which "... specializes in helping capital-intensive, risk-intensive, and research intensive companies analyze their most critical decisions, develop strategies, and create business opportunities" (7:i). Both authors have extensive experience in the discipline of decision analysis. In their publication, they defined the basic components and the variable relationships represented by the influence diagram (7:735-737). Chance nodes are represented by circles and decision nodes are represented by boxes/squares. The uncertainty in the model is represented by chance nodes which are essentially random variables having an associated probability distribution. Decision nodes represent the various decisions that are to be made in the model. Howard and Matheson define two arrows/arcs which indicate the two types of influence which can exist between two nodes. Informational influences are represented by arrows into a decision node and graphically show which variables will provide known information at the time when the decision is made (7:735). Conditioning influences are graphically represented by arrows into chance nodes and "...show the variables on which the probability assignment to the chance node variable will be conditioned" (7:735). Howard and Matheson also define the basic rules for graphically manipulating the diagram to form a representation that is suitable for assessment purposes and, at the same time, preserves the inherent mathematical value of the model (7:732). This is an important advantage in modeling the problem since it allows the decision maker to manipulate the graph and isolate the variables and influences of interest to assess the model. Reversing the direction of the arcs between two chance nodes in the diagram is accomplished by the application of *Bayes'* theorem. Building upon the work of Howard and Matheson, Shachter developed formal definitions of the graphical manipulations. He formed theorems for each process and provided mathematical proofs supporting each one (24:876-879). These theorems include the removal of chance nodes, removal of decision nodes, and the reversing of the arc directions. Based upon these rules, Shachter developed algorithms for solving influence diagrams. These algorithms provide a foundation for computer manipulation of influence diagrams. Shachter also introduces a third node. He graphically represents the value node as a rounded rectangle; however, today's most common representation is a diamond. The value node represents the decision maker's utility associated with a specific decision and the arcs into value nodes represent the attributes of the utility function (24:873). Up to this point in time, influence diagrams had been used primarily as a communication tool for structuring models and representing dependencies among variables and information flow. In another publication, Shachter provides a methodology for applying influence diagrams to probabilistic inference models. A probabilistic model represents a problem in which an inference must be made based upon the available probability distributions and known observations of the critical variables represented in the graph (23:406). An influence diagram is termed probabilistic if all the variables in the model represent constants or uncertain quantities (26:590). Additionally, each node, at the secondary data level of the diagram contains the variable's associated data represented as a set of outcomes with a conditional probability distribution corresponding to those outcomes (26:590). Shachter introduces a fourth node called a deterministic node which is graphically represented as a double circle. The deterministic node represents a variable whose value is certain given the value of the preceding conditional variables (26:509). Shachter formalizes the procedures for manipulating the influence diagram of inference models and provides the proofs and associated algorithm for solving such models (26:594-597). Furthermore, an algorithm is presented which determines the minimum information requirements of the nodes for solving probabilistic inference model (26:599). In the first article above by Shachter, he proposes that further research be accomplished to improve his algorithm by developing a procedure which optimizes the sequence in which node reductions are accomplished (24:882). Rege and Agogino introduced the greedy algorithm in their use of influence diagrams for developing expert systems. The authors argued that Shachter's goal-directed algorithm did not include any complexity analysis (23:406). One purpose of their research was to develop an efficient algorithm which could be applied to large complex problems. They developed an algorithm capable of solving inference problems by applying a search heuristic that keeps the required number of mathematical operations to a minimum. The "... greedy algorithm performs operations in the order of estimated least cost" (23:406). The authors showed that this algorithm does not guarantee that the operations will be performed in an optimal sequence; however, it does minimize the number of required arc reversals for removing a node (23:406). Until now, the application of influence diagrams in representing the modeled variables has been limited to discrete probability distributions. In the latest development in the area of influence diagramming, Shachter and Kenley present a linear-quadratic-Gaussian model for applying influence diagramming theory for representing continuous variables (25:527). An influence diagram becomes a Gaussian probabilistic influence diagram if "...the joint probability distribution for the variables in the model is multivariate normal" (25:528). In other words, the conditional probability distribution of all the variables being analyzed is represented by a normal standard distribution with a mean and conditional variance and the associated influence is represented by a linear coefficient (25:529). 2.2.4 Application. This research applied influence diagrams to construct a prediction model. Two models which previously applied this concept are now presented. Narchal, Kittappa, and Bhattacharya incorporated influence diagrams in their application of a long-range planning system called Business Environment Scanning System for Corporate Planning (20:96). Since the success of a business organization is heavily dependent upon the nature of the environment it encounters, it is essential that the organization thoroughly understand the environment in which it currently operates and be able to predict the condition of that environment in the future. Based upon such an assessment, the organization can adapt and determine the strategic movement to undertake which will ensure corporate success. This is the reason why "...most practitioners in corporate planning have been devoting attention to Business Environmental Scanning as an important aspect of corporate planning (20:96)." Therefore, the authors stress the need to be constantly aware of those environmental descriptors which reveal the developments, trends, and events in the environment and allow the Business Environmental Scanning System to generate signals which indicate possible threats or opportunities existing in an environmental area (20:98). These environmental descriptors are linked to the long-range planning system through environmental indicators and influence diagrams. For example, the article illustrates how factors such as demand, supply, and manufacturing costs influence the price of raw materials (20:100). Once the Environmental Descriptor in different Environmental Areas is continuously monitored and the Influence Diagram for different Environmental Indicators are ready, the system serves as an Early Warning System for the Corporate Planning group to plan the right strategies and quantum of strategic thrust it has to give in the different areas of the company. (20:99) The authors point out a limitation to their system by indicating that the relationships of the variables in the model are heavily dependent upon the accurate representation of an expert's opinion. "The reliability of the system, therefore, depends on the efficacy and the depth of the Influence Diagram" (20:104). In another application of influence diagrams for predicting future conditions, Britto and Oliver applied the technique in their analysis of forecasting donors, gifts, and cumulative private donations to an educational fund in the College of Engineering at the University of California, Berkeley (4:39). The authors constructed an influence diagram to analyze the relationship among potential donors, non-donors, new donors, and the cumulative number of donors. The model showed that "... the number of non-donors is influenced by the total donor potential N and the cumulative donors" (4:42). In an application that supports Owen's contention that influence diagramming is a modeling language used to communicate between individuals, Howard introduces the concept of Knowledge Maps. Each individual possesses a vast amount of knowledge in many different areas. The challenge which faces individuals is to assemble that knowledge into a recognizable form which is suitable for assessment purposes. AND COLOMBE TO SECURITY OF THE PROPERTY The knowledge we have about any uncertain event is composed of many fragmented pieces of information that are relevant to the event in question. The fragments of information may exist in one person or among several people. We face the problem of how to gather and coordinate these fragments to
form a coherent probability assignment. (8:903) Influence diagrams provide a means for constructing knowledge maps that will help an individual effectively compile information from a diverse group of information sources. An influence diagram composed of chance nodes and arcs is called a relevance diagram (8:904). A knowledge map is a relevance diagram constructed to capture the knowledge of an individual, its author. The author may be able to consult with a group of experts who can assess probability assignments that he will accept as his own in the knowledge map. (8:905) Through a number of illustrative examples, Howard demonstrates the process of constructing knowledge maps with influence diagrams. By identifying various pieces of information related to the problem, an individual can then attempt to organize these variables by defining the relationships among each of them. This process allows the construction of an influence diagram which assists the individual in organizing the fragmented information into a useful form. Directly related to the area of knowledge mapping, Rege and Agogino, mentioned earlier for the "greedy" algorithm, applied influence diagrams as a means to capture the type of knowledge required in the formulation of expert systems. "The representation and management of uncertainty is a critical issue in the development of expert systems (23:402)." The authors demonstrated how influence diagrams can accomplish this task by formulating the process of capturing the knowledge of an expert and representing it in the influence diagram framework. The process was then illustrated in the modeling of an expert system for purchasing a used car (23:409). #### 2.3 Satellite Mission Prediction Past research has been accomplished in the area of satellite mission identification. Currently, the SSC uses a software program, AUTOLAUNCH, developed by Teledyne Brown, to assist in mission identification. AUTOLAUNCH requires the input of launch information to select a specific launch folder which identifies possible missions based upon historic launch parameters. A decision rule based expert system was developed which models the mission identification procedures used by the SSC (19). Another model applied statistical analysis techniques for identifying satellite missions (19). The specific techniques used were multiple discriminate, factor, and cluster analysis. #### 2.4 Summary This literature review on influence diagrams discussed the dual purpose of this technique, the evolution of its development and formalization, and the various applications of this concept. Influence diagrams provide a means for representing a model in an easy-to-understand graphic network which is also formally expressed for computer manipulation. They also serve as a modeling language which allows communication between the decision maker and decision analyst for jointly modeling the problem. Since its introduction, influence diagrams have evolved from a communication tool to a formalized analytical tool for evaluating probabilistic inference and decision analysis models. The technique of influence diagramming is now formalized by mathematical theorems, corollaries, and propositions, and includes a number of algorithms which allow automated systems to solve the mathematical manipulations. The application of influence diagrams extends beyond the scientific community and its use can be seen in today's business sector. Finally, previous approaches to the mission identification problem included expert systems and statistical analyses. #### III. Methodology #### 3.1 Introduction This chapter will describe the methodology that was applied towards the research objective. The research centers on the application of influence diagramming and solving such diagrams to extract information specifically formatted for the decision maker. The literature review in the previous chapter cites a number of references which can provide a more detailed and advanced explanation of these concepts than are presented in this research. The paragraphs that follow will address the methodology applied towards the resolution of the research objective. The methodology applied provides the reader with an initial understanding of influence diagramming formulation and resolution and also provides are overview of the Soviet space program. #### 3.2 Data Availability It was necessary to obtain historical data on Soviet launches and satellite orbits in order to define the probabilistic relationships that exist among the variables in the model and examine how they each contribute towards predicting Soviet satellite missions. Several organizations were contacted to obtain this historical data. #### 3.3 Soviet Satellite Missions The Soviet satellite missions had to be identified in order to construct the model for the influence diagram. Specific data required included mission descriptions, launch information, orbital parameters, and operational constellations. This information was needed to distinguish amongst the diverse number of Soviet satellite missions. The mission data was also required to help define decision thresholds in the probability calculations. The Soviet Year in Space, produced by Teledyne Brown, contained the required information at the unclassified level. Additionally, personal interviews were conducted with experts in the field of Soviet satellite identification. #### 3.4 Influence Diagram Model An overview of basic elements and operations of influence diagrams is presented followed by the construction of the model. Based upon the historical data and expert knowledge, the relationships that exist among each of the predictive variables were defined and represented graphically in an influence diagram. Upon examination of the predictive variables, it was obvious that some were discrete while others were continuous. The literature review revealed that influence diagrams are capable of manipulating models with discrete variables and that recent developments allow representation of continuous variables that are Gaussian in nature. However, to date, no algorithms exist that are able to manipulate both type of variables in a single model. Additionally, the influence diagramming software programs available for this research were designed for discrete variable application only. Therefore, it was necessary to apply a method called discretizing to convert the continuous variables to approximately discrete variables. In formulating prior probabilities for the model, heavy reliance is placed on expert opinion, historical trends, world situation, current Soviet requirements, and intelligence information. The influence diagramming software programs used include the AFIT Influence Diagram System (AFids) (3), developed by Captain Christopher T. Baron and Influence Diagram Processor (InDia), developed by Decision Focus Incorporated. These software programs are capable of graphically representing the model and manipulating the data to obtain the desired probabilistic relationships. Finally, the model was validated and an analysis of the results was presented. #### 3.5 Summary This thesis research demonstrated the ability of an influence diagram to capture the expert knowledge in the area of Soviet space systems and use the information to construct a mission prediction model. #### IV. Satellite Data and Mission Descriptions #### 4.1 Introduction This chapter will first discuss the availability of historical data on the Soviet Space program and the classification issues involved. Secondly, the chapter will provide descriptions of the various Soviet satellite systems and their associated launch and orbital parameters. #### 4.2 Historical Data To identify data availability, contact was made with several organizations. The Space Surveillance Center maintains a database which contains the orbital parameters of past and present Soviet satellites. The data is represented in a two-line orbital element set which contains a number of parameters which characterize the orbit of an observed satellite. However, the element set does not identify an associated mission. If certain missions are provided with the element sets, the data may become sensitive to U.S. National Security and would therefore be classified SECRET ("Information such that unauthorized disclosure could reasonably be expected to cause Serious Damage to National Security (28:1.2).") or TOP SECRET ("Information such that unauthorized disclosure could reasonably be expected to cause Exceptionally Grave Damage to National Security (28:1.2)."). The Foreign Technology Division has access to this information. However, to avoid the administrative problems associated with using classified information, the predictive model was produced with data published in The Soviet Year in Space, by Nicholas L. Johnson, the Advisory Scientist for Teledyne Brown Engineering. This unclassified document contains launch data and orbital parameters of Soviet satellite systems as well as additional information which was used to formulate prior probabilities. This data represents the initial operational orbits of the associated launches. Five volumes (1985-1989) of this annually published document were obtained to extract the historical data for calculating the probabilistic relationships among the variables of the model. The two line element sets from the SSC, that were mentioned above, were needed to supplement the data provided by the Soviet Year in Space. Specifically, the parameter argument of perigee was required to distinguish two Soviet missions. The data from 1990 launches was excluded in the development of the influence diagram model. Splitting the data at this point provided a subset for testing and validating the model. This test data is is listed in Appendix C. #### 4.3 Soviet Satellite Missions This section will provide a brief mission description of the various operational Soviet satellite systems. Additionally, possible launch sites,
boosters, and orbital parameters for each mission will be presented. The information presented in this chapter, unless otherwise cited, was obtained from *The Soviet Year in Space 1989* (11). The reader is advised to refer to this document for more detailed mission and system descriptions. It is estimated that about 80 percent of all Soviet space launches are related in some way to programs for national security: space-based reconnaissance, communications, navigation and missile early-warning satellites. About 10 percent are related to the support and operation of the space station. The remaining launches are devoted to automated scientific satellites, civil-communications satellites and navigation satellites. (2:34) Due to the Soviet's heavy reliance on space platforms to support its national security efforts, it is necessary to distinguish between the military and non-military related missions. It is important to understand the entire spectrum of the Soviet space program and how these assets support the Soviet military forces. Therefore, this section will also identify those missions that are military in nature. - 4.3.1 Photographic Reconnaissance Satellites The greatest proportion of Soviet launches are from their photographic reconnaissance program, which accounted for 42% of the launches in 1989, slightly higher than that for the decade. The specific missions of these satellite systems cover a broad spectrum which includes strategic and tactical missions, and the monitoring of Earth resources. The Soviet mainly use these systems to continually monitor U.S. and NATO strategic forces. Tactical photography is utilized for monitoring specific regional areas of conflict throughout the world. Soviet tactical reconnaissance satellites have been utilized in Afghanistan, the Middle East, Africa, and Central America. Earth Resource satellites monitor the world-wide status of mineral and agricultural deposits. These multi-spectral Earth Resource imaging systems may also be used for military application and do occupy the same orbit as the military photographic systems. Therefore, for the context of this research, these systems will be classified as military systems. The Soviet photographic satellites consists of three generations which vary in technical capability as well as lifetime. - 4.3.1.1 Third Generation. First and second generation photo reconnaissance satellite systems are no longer utilized in the Soviet reconnaissance program. All the Earth Resource satellite systems are third generation. Since the 1980's, all of these systems have been launched into high inclinations of 82-83 degrees from Plesetsk with an average lifetime of 19 days. The majority of the third generation systems are assigned military area and spot surveillance missions with average lifetimes of 12-16 days. The main disadvantage of these third generation satellites is the requirement to deorbit the entire spacecraft in order to process the film. - 4.3.1.2 Fourth Generation. To overcome the deficiency of third generation satellites, the Soviets developed the fourth generation systems which allow for the ejection and deorbit of film capsules versus deorbiting the entire spacecraft. In addition, an improved average lifetime of 44-49 days was achieved. 4.3.1.3 Fifth Generation. In late 1982, the Soviets introduced their latest generation of photographic reconnaissance satellites with an improved average lifetime of 183 days. Mr. Johnson cites from the Director of U.S. Naval Intelligence, Rear Admiral Thomas A. Brooks, that the long lifetimes of these systems suggest that the data might be transmitted in real-time versus by the traditional physical means (11:37). 4.3.2 Photographic Reconnaissance Orbits. The Soviets utilize a number of highly inclined orbits, launched from Plesetsk and Tyuratam with varying eccentricities and altitudes. Table 1 lists, by generation, the various orbits used for photographic reconnaissance as of 1989. During that year, a change in orbits used by third generation photo reconnaissance satellites was witnessed. The Soviets abandoned the 70.4 and the 72.9 degree inclined orbits from Tyuratam and Plesetsk, respectively, and moved these missions to an orbit with an inclination of 62.8 degrees. Additionally, a fourth generation orbit of 70 degrees was chosen over the previous 64.9 degree orbit. Table 1. Photographic Reconnaissance Orbits のでは、これでは、これでは、日本の | INCLINATION | ALTITUDE/ECCENTRICITY | | | | | | |---------------|----------------------------------|--|----------------|--|--|--| | (Launch Site) | LOW/CIRCULAR | LOW/CIRCULAR LOW/ECCENTRIC HIGH/CI | | | | | | 50.6° (TT) | | 4th Generation | | | | | | 62.8° (PL) | 3rd Generation | 3rd Generation
4th Generation | 3rd Generation | | | | | 64.8° (TT) | 4th Generation
5th Generation | 4th Generation | | | | | | 67.1° (PL) | | 4th Generation | | | | | | 70.0° (TT) | 3rd Generation | 3rd Generation
4th Generation | 3rd Generation | | | | | 82-83° (PL) | 3rd Generation | 3rd Generation | 3rd Generation | | | | Table 2. Photographic Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE(S) | BOOSTER | |----------------|----------------|---------| | 3rd Generation | PL, TT | SL-4 | | 4th Generation | PL, TT | SL-4 | | 5th Generation | TT | SL-4 | 4.3.3 Communication Satellites. Due to the significantly large geographical expanse of the Soviet Union, which spans half the globe, communication throughout the country is major task. Nearly one-half of all operational Soviet satellites are devoted to communication missions. The Soviets satellite communication consists of three systems varying in altitude. 4.3.3.1 Low Altitude. The low altitude communication satellites consists of three separate constellations which comprise the Soviet's command, control, and communication network. D. Ball concludes, as described by Mr. Johnson, that the low altitude communication systems appear to provide delayed or near-realtime global communication relays from military and intelligence users to U.S.S.R. authorities (11:38). They employ a "store and dump technique" whereby the communications data is transmitted to the satellite which stores the data until it can be downlinked to a receiving ground station. The lowest of the three constellations consists of three planes that are spaced 120 degrees apart with each containing one satellite. They are launched from Plesetsk on SL-8 boosters into inclinations of 74 degrees, with a period of 101 minutes, a mean altitude of 800 km, and an average lifetime of 12-13 months. The remaining two low altitude constellations are multiple payload communication satellites. From a single launch, six or eight payloads are placed into orbit. The constellation utilizing the eight payload deployment consists of 24 satellites in a single plane with an inclination of 74 degrees, period of 115 minutes, a mean altitude of 1450 km, and an average lifetime of 16-18 months. This constellation can provide approximately 17 hours of uninterrupted communications each day. Also, due to the number of satellites in the constellation, the loss of one or two satellites would have minimal effect on the operations of the system. The constellation which utilizes the six payload deployment is launched from Plesetsk on a SL-14 booster and is placed in a higher inclined orbit of 82.6 degrees with a period of 114 minutes, mean altitude of 1400 km. 4.3.3.2 Molniya. A Molniya orbit is one characterized by a high eccentricity (low perigee and very high apogee). This characteristic allows the communication satellite to remain over a particular geographical area for an extended period of time without having to be at a geosynchronous orbit. Additionally, it allows for area coverage at the northern latitudes. These communication satellites spend approximately eight hours a day at high altitudes over the northern hemisphere of the Soviet Union providing telephone and television services to the Soviet Union and Eastern Europe. The Molniya-1 constellation consists of 8 planes which are spaced 45 degrees apart with a single satellite per plane inclined at 62.8 degrees with a period of 718 minutes, a perigee of 400 km, and an apogee of 40,000 km. They are launched on SL-6 boosters from Tyuratam and Plesetsk. The Molniya-3 communication satellite system consists of two constellation of four planes spaced 90 degrees apart with one satellite per plane. The altitudes, inclination, and period are identical to those of the Molniya-1 satellite, however, Molniya-3 satellites have only been launched from Plesetsk on SL-6 boosters. The principle differences between the Molniya-1 and Molniya-3 satellites is that the former operates at higher communication frequencies and has a physically different solar array.
4.3.3.3 Geosynchronous. The Soviets were late in developing a geosynchronous communication system because of their investment in the Molniya program and because the geostationary orbit required a larger cost for boosting the payload to the high altitude. Additionally, the orbit can not service the higher northern latitudes of the Soviet Union. As of 1989, geostationary communication satellites occupy 19 positions along the equator. These geostationary systems are launched from Tyuratam on SL-12 boosters to an inclination between zero and two degrees with a period of 1436 minutes and a mean altitude of approximately 35,785 km. The geosynchronous communication satellites are divided into four programs: Raduga, Ekran, Gorizont, and Kosmos. Raduga. The Raduga satellites occupy equatorial positions of 35, 45, 49, 70, 85, 128, 190, 335 degrees east. The Raduga satellite has not been publicly displayed, nor has its illustrations been released. This Soviet reluctance has been interpreted in the West as evidence that Raduga satellites primarily serve military and government functions. Further supporting this theory are Soviet plans filed in the late 1970s to establish what the Russians call a Gals system of transponders for military/governmental communications at Raduga locations. Today every Raduga satellite is located at a registered Gals position. (11:43) - Ekran. Three Ekran satellites occupy the same equatorial position of 99 degrees east and serve as a television and radio relay platform and also provides weather and oceanographic data to Soviet ships through the Arctic Television Information System. - Gorizont. The Gorizont geosynchronous satellites are general purpose communication satellites which are very similar to the Molniya-3 satellites. Gorizont satellites support the following: U.S.- U.S.S.R. hotline, the INMARSAT maritime communication network, the international Intersputnik telecommunications system, the Soviet national Moskva television system, and the new Moskva-Globalnaya system. In addition to these missions, transponders are available for commercial use. These Gorizont satellites occupy equatorial positions of 40, 53, 80, 90, 96.5, 103, 140, 190, 346, and 349 degrees east. • Kosmos. The fourth generation of geosynchronous communication satellites are listed under the Kosmos name and have been involved in missions associated with data relay for the Soviet Satellite Data Relay Network similar to that of the U.S. Tracking and Data Relay Satellite System (TDRSS). These Kosmos satellites occupy geostationary positions of 80, 95, 335, and 346 degrees east. Table 3. Communication Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | CONSTELLATION | |---------------------|--------|---------|-------|--------|---| | | (km) | (km) | (deg) | (min) | | | Low Alt-1 | 810 | 790 | 74 | 101 | 3 planes spaced 120°
1 satellite per plane | | Low Alt-2 | 1,550 | 1,350 | 74 | 115 | 24 satellites in 1 plane | | Low Alt-3 | 1,415 | 1,385 | 83 | 114 | 2 planes spaced 90°
6 satellites per plane | | Molniya 1 | 40,000 | 400 | 63 | 718 | 8 planes spaced 45°
1 satellite per plane | | Molniya 3 | 40,000 | 400 | 63 | 718 | 4 planes spaced 90°
1 satellite per plane | | | 40,000 | 400 | 63 | 718 | 4 planes spaced 90°
1 satellite per plane | | Geo-
synchronous | 35,785 | 35,785 | 0-2 | 1436 | 19 locations above the equator | 4.3.4 Navigation Satellites. Of all space systems the Soviet Union currently operates, none is more duplicative of a U.S. system than their navigation systems. The Soviet low altitude navigation system is very similar to the American Transit system and the Soviet Global Navigation Satellite System (GLONASS) is very similar to the U.S. NAVSTAR Global Positioning System (GPS). Table 4. Communication Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE(S) | BOOSTER | |----------------|----------------|---------| | Low Alt-1 | PL | SL-8 | | Low Alt-2 | PL | SL-14 | | Low Alt-3 | PL | SL-8 | | Molniya-1 | PL, TT | SL-6 | | Molniya-3 | PL | SL-6 | | Geosynchronous | TT | SL-12 | 4.3.4.1 Low Altitude Navigation. The Soviet low altitude navigation system consists of two constellations which operationally complement each other. The military constellation has six orbital planes which are spaced 30 degrees with a single satellite in each plane and the civilian constellation only consists of four planes spaced 45 degrees apart, also with a single satellite in each plane launched from Plesetsk on a SL-8 booster. Both constellations possess orbits with an inclination of 83 degrees, period of 105 minutes, perigee of 965 km, and apogee of 1020 km. Both systems are used primarily by the Soviet navy and maritime ships for geographical coordinates. In addition, the civilian satellites possess transponders for use by the international search and rescue system (U.S.S.R. - COPAS and U.S. - SARSAT). Since both low altitude constellations are in the same orbit, separated only by right ascension degrees, it would be possible to design ground equipment compatible to the transmission formats and frequencies of both constellations, significantly increasing ground coverage. Therefore, both systems will be categorized as having military missions. 4.3.4.2 Global Navigation Satellite System. An unprecedented step towards a joint operational space system was taken by the agreement to merge U.S. and Soviet navigation system. This was reported by *Izestiya* and described by Mr. Johnson as follows: The similarity of GLONASS and the American GPS permits the construction of receivers which can access either system. This concept of a unified space-based navigation system was taken a step forward in 1989 when the United States and the Soviet Union agreed to coordinate the GPS and GLONASS operations for the international community. (11:52) GLONASS satellites are launched as multiple payloads (three per launch) on SL-12 boosters from Tyuratam. However, in 1985, there were three launches with unknown boosters. The GLONASS constellation contains three planes spaced 120 degrees apart with three or more satellites in each plane in inclined orbits of 65 degrees with periods of 676 minutes and a mean altitudes of 19100 km. Table 5. Navigation Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | CONSTELLATION | |-----------|--------|---------|-------|--------|---| | | (km) | (km) | (deg) | (min) | | | Low Alt-1 | 1,020 | 965 | 83 | 105 | 6 planes spaced 30°
1 satellite per plane | | Low Alt-2 | 1,020 | 965 | 83 | 105 | 4 planes spaced 45°
1 satellite per plane | | GLONASS | 19,200 | 19,000 | 65 | 676 | 3 planes spaced 120° 3 or more satellites per plane | Table 6. Navigation Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |-----------|-------------|---------| | Low Alt-1 | PL | SL-8 | | Low Alt-2 | PL | SL-8 | | GLONASS | TT | SL-12 | 4.3.5 Geodetic Satellites. Geodetic satellites are very similar to the navigation satellites and are used primarily to map the Earth's shape and measure its gravitational field. However, in addition to the scientific uses such as earthquake prediction, the data collected is used in calculating targeting parameters for long range tactical and strategic weapons. Therefore, their missions will be classified as military. The low altitude geodetic satellites are launched from Plesetsk on SL-14 boosters into inclinations of 73.6 or 82.6 degrees with a period of 116 minutes and a mean altitude of 1500 km. Two higher latitude geodetic satellites were launched with GLONASS navigation satellites and are in identical orbits. Table 7. Geodetic Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | |-----------|--------|---------|-------|--------| | | (km) | (km) | (deg) | (min) | | Low Alt-1 | 1,503 | 1,498 | 82.6 | 116 | | Low Alt-2 | 1,526 | 1,480 | 73.6 | 116 | | High Alt | 19,200 | 19,000 | 65.0 | 676 | Table 8. Geodetic Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |-----------|-------------|---------| | Low Alt-1 | PL | SL-14 | | Low Alt-2 | PL | SL-14 | | High Alt | TT | SL-12 | 4.3.6 Meteorology Satellites. The Soviet meteorological satellites are able to provide more than cloud coverage photography. This was revealed from a direct quote Mr. Johnson obtained from a Soviet national paper, U.S.S.R., Second United Nations Conference on the Exploration and Peaceful Uses of Outer Space which reads as follows: - (a) twice a day information on distribution of cloudiness and ice and snow cover over the Earth as TV-images in visible and IR-bands; - (b) twice a day global data on temperature fields and cloudtop heights, as well as on water surface temperatures; - (c) twice a day global information on the radiation situation in near space; - (d) two or three times a day TV-images of cloud, ice and snow covers in areas of 6-7 million km² each, being received in any region of the Earth at self-contained receiving points. (11:55) Soviet meteorology satellite system consists of two constellations, each with a single satellite per plane spaced 60 degrees apart. The Meteor 2 and 3 satellites differ in mean altitude at 950 and 1240 km, and in period at 104 and 110 minutes, respectively, but share the same inclination of 83 degrees. Both systems are launched from Plesetsk on SL-14 boosters. Table 9. Meteorological Satellite Orbits | PROGRAM | APOGEE (km) | PERIGEE (km) | INCL
(deg) | PERIOD (min) | CONSTELLATION | |----------|-------------|--------------|---------------|--------------|--| | Meteor 2 | 960 | 940 | 83 | 104 | 3 planes spaced 60°
1 satellite per plane | | Meteor 3 | 1,250 | 1,230 | 83 | 110 | 3 planes spaced 60°
1 satellite per plane | Table 10. Meteorological Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |----------|-------------|---------| | Meteor 2 |
PL | SL-14 | | Meteor 3 | PL | SL-14 | 4.3.7 Remote Sensing Satellites. The technology of remote sensing allows a country to monitor its own natural resources, as well as those of other countries. The evaluation of earth resources is an important part of the Soviet space program because of its dollar savings. For the mission description, Mr. Johnson quotes I. Yegorova and Yu. Zaytsev in *Politcheskoye Samoobrazovaniye*, which reads as follows: Remote sensing saves the Soviet economy an estimated 500-600 million rubles a year by assisting "agriculture and forestry, geology and mineral surveys, hydrology and water resource management, oceanography and evaluation of marine resources, geography and control of the environment." (11:59) The Soviet's remote sensing program can be divided into the following classes: Resurs-F, Resurs-0, Okean-0, Almaz, and Prognoz. - 4.3.7.1 Resurs-F. Resurs-F remote sensing satellites were mentioned earlier in the photographic reconnaissance section. These satellites are third generation photo reconnaissance satellite used to monitor earth resources. However, their high resolution allows for the capture of military data and are therefore included in that section. - 4.3.7.2 Resurs-0. The Resurs-0 satellites are very similar to the U.S. Landsat satellites and utilize multi-spectral sensors in an inclined orbit of 98 degrees with a period of 98 minutes, and a mean altitude of 640 km. From this orbit, Resurs-0 satellites are able to monitor land masses and oceans world-wide. The Resurs-0 satellites are launched from Tyuratam on a SL-3 booster. - 4.3.7.3 Okean-0. The Okean-0 is an oceanographic satellite which possess multiple capabilities. Mr. Johnson obtained a quoted mission description for this system from the "Yuzhnoye" Scientific-Production Association (NPO) which states the following: - all-weather monitoring of ice conditions; - all-weather monitoring of wind-induced seaway, storm and cyclone regions (mesoscale convective cells of active power interchange of ocean and atmosphere, atmospheric precipitation regions); - all-weather monitoring of flood regions; - radar and optical monitoring of dynamic phenomena on the ocean surface (pollution zones, internal waves, upwelling, etc.). (11:60) Okean-0 satellites are launched from Plesetsk on SL-14 boosters into an inclined orbit of 82.5 degrees with a period of 98 minutes and an apogee of 665 km and a perigee of 635 km. 4.3.7.4 Almaz. The Almaz was launched in 1987 into low earth orbit with a mean altitude of 255 km, inclined at 71.93 degrees, and with a period of 89.55 minutes. It was launched from Tyuratam on a SL-13 booster. The Almaz produced commercially available remote sensing products from a number of scientific disciplines. The next scheduled launch will be sometime this year. 4.3.7.5 Prognoz. The Prognoz is a geostationary remote sensing platform used to monitor the Earth's natural resources, oceans, and atmosphere. Launched from Tyuratam on a SL-12 booster, the satellite was placed into a geostationary orbit, inclined at 1.26 degrees, and located above the equator at 12 degrees east. Table 11. Remote Sensing Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | |----------|--------|---------|-------|---------| | | (km) | (km) | (deg) | (min) | | Resurs-0 | 660 | 617 | 97.97 | 97.49 | | Okean-0 | 665 | 635 | 83.00 | 98.00 | | Almaz | 259 | 245 | 71.93 | 89.55 | | Prognoz | 35,800 | 35,782 | 1.26 | 1436.34 | Table 12. Remote Sensing Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |----------|-------------|---------| | Resurs-0 | TT | SL-3 | | Okean-0 | PL | SL-14 | | Almaz | TT | SL-13 | | Prognoz | TT | SL-12 | 4.3.8 Scientific Satellites. The Soviet Scientific satellite program covers the disciplines of atmospherics, geophysics, materials science, biology, and astrophysics. In the history of the Soviet scientific satellite program a wide variety of orbits have been employed, however, over the last five years, only six of these have been used for the missions listed in Table 13. The Photon series is used to conduct microgravity experiments in the area of materials processing and biotechnology. Yearly launches are planned through the early 1990s. The Bion is a short duration mission used to investigate biological effects of motion sickness, reproduction and regeneration, immunology, and readaptation to a normal gravity environment. Future Bion missions are being planned. In 1986, Kosmos 1809 was launched to study the ionosphere (14:37). Two satellites, Prognoz 10 and Aktiviny, were launched to study the sun and the magnetosphere. The latest scientific mission launched in 1989 was the Granat astrophysical observatory. Over a dozen scientific satellite programs are planned for the next ten years and into the next century. These program will investigate the following: - issues pertaining to the origin and evolution of the universe. - radiation detection - solar wind and the Earth's magnetosphere - solar observations and phenomena - mapping of the celestial sphere for astronomical, astronautical, and geophysical studies - use of a gamma ray telescope - use of small scale laboratories to study plasma structures in the near-Earth environment - universal background radiation - the structure and dynamics of the upper atmosphere Table 13. Scientific Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | |-------------|---------|---------|-------|--------| | | (km) | (km) | (deg) | (min) | | Photon | 380 | 216 | 62.8 | 90.5 | | Bion | 267 | 207 | 82.3 | 89.7 | | Kosmos 1809 | 966 | 945 | 82.5 | 104.2 | | Prognoz 10 | 200,320 | 421 | 65.0 | 5785.0 | | Aktiviny | 2,493 | 500 | 82.6 | 115.9 | | Granat | 202,480 | 1,760 | 51.9 | 5928.0 | Table 14. Scientific Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |-------------|-------------|---------| | Photon | PL | SL-4 | | Bion | PL | SL-4 | | Kosmos 1809 | PL | SL-14 | | Prognoz 10 | TT | SL-6 | | Aktiviny | PL | SL-14 | | Granat | TT | SL-12 | 4.3.9 Early Warning Satellite Orbits. The Soviet early warning satellites support their missile attack warning system. These satellites are placed in orbits similar to the Molniya communication satellites and are launched on the same SL-6 booster. However, early warning satellites have only been launched from Plesetsk. The Soviets early warning constellation of nine satellites in individual planes spaced 40 degrees apart ensures constant observation of the western and central United States. Table 15. Early Warning Satellite Orbit | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | CONSTELLATION | |------------|--------|---------|-------|--------|--| | | (km) | (km) | (deg) | (min) | | | Early Warn | 40,000 | 400 | 63 | 718 | 9 planes spaced 40°
1 satellite per plane | Table 16. Early Warning Satellite Launch Site and Booster | PROGRAM | LAUNCH SITE | BOOSTER | |------------|-------------|---------| | Early Warn | PL | SL-6 | 4.3.10 Electronic Intelligence Satellites. The Soviet ELINT satellite is a military surveillance satellite used to collect strategic and tactical data in the non-visible portion of the electromagnetic spectrum. The Soviets have two constellations of ELINT satellites. The lower altitude constellation contains one satellite in each of the six planes that are spaced 60 degrees apart, while the higher constellation possess one satellite in each plane spaced 45 degrees apart. The lower altitude ELINT satellites are launched from Plesetsk on SL-14 boosters into inclined orbits of 83 degrees with a period of 98 minutes and an apogee and perigee of 665 and 635 km, respectively. The higher altitude satellites are now launched from Tyuratam on SL-16 boosters. Previous launches were on SL-12 boosters and, in 1985, two launches on an unidentifiable booster. The orbits are inclined 71 degrees with a period of 102 minutes and apogee and perigee of 855 and 850 km, respectively. Table 17. Electronic Intelligence Satellite Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | CONSTELLATION | |---------|--------|---------|-------|--------|--| | | (km) | (km) | (deg) | (min) | | | ELINT 1 | 665 | 635 | 65 | 98 | 6 planes spaced 60°
1 satellite per plane | | ELINT 2 | 855 | 850 | 71 | 102 | 4 planes spaced 45°
1 satellite per plane | Table 18. ELINT Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |---------|-------------|---------| | ELINT 1 | TT | SL-6 | | ELINT 2 | PL | SL-16 | 4.3.11 Ocean Surveillance Satellites. Due to the significant size of Western naval forces, the Soviet Union has placed heavy emphasis on the maintenance of an operational ocean surveillance satellite system. The objectives of the Soviet ocean reconnaissance network are to detect, identify, and track U.S. and Allied naval forces and to relay this information in realtime directly to Soviet naval and air elements. (6:53) The Soviet ocean surveillance network is composed of two satellite systems. The Radar Ocean Reconnaissance Satellite (RORSAT) system consists of one or two satellites in a single plane. The orbit is inclined 65 degrees with a period of 90 minutes, an apogee of 270 km, and a perigee of 250 km. The ELINT Ocean Reconnaissance Satellite (EORSAT) system is in a constellation of two planes spaced 172 degrees apart with one to three satellites per plane. The orbit is higher than that of the RORSAT with an apogee of 420 km and a perigee of 405 km, inclined at 65 degrees with a period of 93 minutes. Both systems are launched from Tyuratam on SL-11 boosters. Table 19. Ocean Reconnaissance Satellite Orbits | PROGRAM | APOGEE (km) | PERIGEE (km) | INCL (deg) | PERIOD (min) | CONSTELLATION | |---------|-------------|--------------|------------|--------------|--| | RORSAT | 270 | 250 | 65 | 90 | 1 plane
1-2 satellites | | EORSAT | 405 | 420 | 65 |
93 | 2 planes spaced 172°
1-3 satellites per plane | Table 20. Ocean Reconnaissance Satellite Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |---------|-------------|---------| | RORSAT | TT | SL-11 | | EORSAT | TT | SL-11 | 4.3.12 Minor Military Satellites. This category of Soviet satellite missions was created by the late Dr. Charles Sheldon II working in the Library of Congress who was instrumental in providing Soviet space assessments to the U.S. Senate. The category includes satellites systems which the Soviets have not released in any scientific literature and do not fit in any other categories. Speculative missions associated with these satellites, as reported by the U.S. Senate Committee on Commerce, Science, and Transportation and described by Mr. Johnson, include radar calibration, measurement of atmospheric density, and spacecraft technology experimentation (11:86). Two possible categories have been established. One group of minor military satellites uses an orbit with a period between 102-109 minutes, an apogee of 1600-200 km, and a perigee of 300-400 km. The second group is characterized by a circular orbit with a period of 94.5 minutes. Soviet minor military satellites have been launched into inclinations of 50.7, 65.8, 74.0, and 83 degrees. The boosters used on these systems include the SL-8 and the SL-14 launched from Plesetsk and Tyuratam. Table 21. Minor Military Satellite Orbits | PERIOD | INCLINATION | | |---------|------------------|--| | (min) | (degrees) | | | 102-109 | 50.7, 65.8, 83.0 | | | 94.5 | 50.7, 65.8, 74.0 | | Table 22. Minor Military Launch Sites and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |---------------------|-------------|-------------| | 102-109 min periods | PL | SL-8 | | 94.5 min period | PL, KY | SL-8, SL-14 | 4.3.13 Co-orbital Anti-Satellite. For the past seven years, the Soviets have not conducted any overt anti-satellite tests in space. The Soviet's co-orbital anti-satellite (ASAT) was first tested in 1967 and the last operation was conducted in 1982. Mr. Johnson states that in The Soviet Space Challenge, the U.S. Department of Defense believes this system is capable of reaching targets at an altitude of 5000 km and is able to conduct multiple launches each day (11:89). With the aid of radar and optical sensors, the co-orbital ASAT moves close to the target and then explodes, destroying the target with the multi-pellet blast (18:21). Soviet co-orbital ASATs have been launched from Tyuratam on SL-11 boosters, however the Soviets could employ SL-14 boosters from Plesetsk, which would increase target opportunities and decrease response times. Table 23. Co-orbital ASAT Launch Site and Booster | PROGRAM | LAUNCH SITE | BOOSTER | |------------|-------------|---------| | ASAT | TT | SL-11 | | (possible) | PL | SL-14 | ### 4.3.14 Manned Space Program - 4.3.14.1 Mir. The Soviet manned space program centers on the space station Mir, which is the operational replacement of the Salyut space station which was abandoned in 1986. Launched in 1986 from Tyuratam on a SL-13 booster, the Mir space station conducts missions in the areas of visual reconnaissance, astrophysical and biological research, monitoring Earth resources, and materials processing. - 4.3.14.2 Kvant. Attachments to Mir were accomplished with the Kvant modules 1 and 2 launched from Tyuratam on the SL-13 booster. The first Kvant, module, launched in 1987, contained international scientific instruments and support equipment for Mir. The module was an astrophysical lab which also contained a multi-spectral Earth resources camera and a payload which had six control moment gyros called Gyrodins (13:85). Due to the success of these gyros in space station stabilization and propellant cost savings, the Kvant 2 module was also equipped with moment gyros and 32 small orientation engines. Kvant 2 also had support equipment to improve normal space station operations. Additional equipment included water, oxygen, sanitation, power, and environmental monitoring systems. The module also contained an array of instruments for geophysical and astrophysical experimentation. - 4.3.14.3 Soyuz. The Soyuz program is the backbone of the Soviet manned program and provides manned flights to the Mir space station. The latest version of this spacecraft is the Soyuz-TM, which possesses an improved navigation and rendezvous system, for docking with Mir, and a new communication system (14:61). The Soyuz-TM is boosted into orbit from Tyuratam on the SL-4 booster. Its specific missions are to advance Soviet space flight technology (maneuvering and docking), engineering and biological research, and conduct operations in the construction of the manned space platform (18:62). 4.3.14.4 Progress. Unmanned resupply missions to the Soviet space station are flown by the Progress cargo ship, which is also launched from Tyuratam on SL-4 boosters. Progress is very similar in design to the Soyuz spacecraft, however, Progress weighs significantly less since there no solar panels, heat shielding, or an emergency escape system (18:54). This reduction in required equipment, allows for increased cargo capacity. But the most important improvement in the Progress design was the inclusion of a returnable capsule with a capacity of 150 kg. This improvement alleviates the requirement for a Soyuz mission to deliver materials from Mir back to Earth. 4.3.14.5 Buran. In 1988, the Soviets launched its version of the U.S. Space Shuttle, the Buran. Despite the successful flight of the Soviet unmanned shuttle, no Buran flights occurred in 1989 because of technical difficulties, lack of political support, and an acceptable justification for its mission. According to Komsomolskaya Pravda, as described by Mr. Johnson, Buran was grounded for economic reasons (11:111). Current plans call for one flight per year from 1991 to 2000, even though the Soviets are capable of launching once a month. The next Buran mission will also be unmanned and Mr. Johnson states that TASS reported that the flight will dock with Mir, presenting the option of returning cosmonauts to Earth via the shuttle. # 4.3.15 Planetary Satellites. 4.3.15.1 The Moon. The year 1989 marked the 30th anniversary of the Soviet lunar exploration program which began with Luna 1, Luna 2, and Luna 3. The last Luna flight was in 1976 and next Luna flight is scheduled for 1992. Mr. Johnson quotes Yu. I. Zaytsev who stated that the mission of the proposed flight is as follows: Table 24. Manned Program Orbits | PROGRAM | APOGEE | PERIGEE | INCL | PERIOD | |---------|--------|---------|-------|--------| | | (km) | (km) | (deg) | (min) | | Mir | 395 | 392 | 51.62 | 92.42 | | Kvant | * | * | * | * | | Soyuz | * | * | * | * | | Prognoz | * | * | * | * | Parameters based on Progress M-2 mission on 20 Dec 89 Table 25. Manned Program Launch Site and Boosters | PROGRAM | LAUNCH SITE | BOOSTER | |----------|-------------|---------| | Mir | TT | SL-13 | | Kvant | TT | SL-13 | | Soyuz | TT | SL-4 | | Progress | TT | SL-4 | | Buran | TT | SL-17 | ^{*} dependent upon Mir orbit to compile detailed video atlases, morphological and geological maps, maps of the chemical composition and radioactivity of the surface, and maps of magnetic, gravitational and thermal fields. (11:115) 4.3.15.2 Venus. During 1961 and 1984, the Soviets launched 30 probes toward Venus. However, the next proposed Venus mission is not scheduled until 1998 and calls for firing a number of surface penetrators at the planet. 4.3.15.3 Mars. For the next couple of decades, the primary focus of the Soviet planetary exploration program will center on the planet Mars, with an ultimate goal of a manned landing and return to Earth. During 1988, the Soviets launched Mars probes Phobos 1 and Phobos 2. According to Krasnaya Zvezda, as mentioned by Mr. Johnson, Phobos 1 was lost due to an attitude control failure. In orbit around Mars, Phobos 2 began rotating which degraded solar array performance, and thus power, causing the vehicle to reach critical temperature. The next Soviet Mars mission is planned for 1994 and calls for the deployment of balloons, from entry modules, to analyze the meteorological and surface condition of the planet. A 1996 mission calls for the return of samples from the Mars moon, Phobos, followed by a 1998 mission to conduct soil analyses of the planet through the use of rovers. 4.3.16 Launch Vehicle Testing. A series of four launch vehicle tests for the SL-16 booster began in October 1986 and was completed in August 1987 (13:13). ELINT payloads have been successfully launched with this booster, however, its more important role is to serve as a strap-on booster for the SL-17 booster, the Energyia. ## 4.4 Summary The size and diversity of the Soviet space program is impressive. The Soviet knowledge and application of space systems span a broad spectrum. In reviewing the mission descriptions, it is possible to divide the Soviet space platforms into two categories, based upon their relation to the military. Table 26 lists the categories for Military and Non-military Soviet satellite systems. Table 26. Military versus Non-military Soviet Satellite Systems | MILITARY | NON-MILITARY | |---------------|----------------| | Photographic | Communication | | Communication | - Molniya | | - Low alt | - Ekran | | - Raduga | - Gorizont | | Navigation | - Kosmos | | Meteorology | Remote Sensing | | Geodetic | Scientific | | Early Warn | Manned | | ELINT | Planetary | | Ocean Recon | | | Minor Mil | | | ASAT | | | LV Tests | | # V. Influence Diagram Model #### 5.1 Introduction This chapter will present the influence diagram model developed from the data discussed earlier. First, an overview of the basic elements and operations of influence diagrams will be presented. Next, will be a description of the prediction variables used in the model, succeeded by a an analysis of the probabilistic relationships that exist among these variables. The chapter will
conclude with the actual influence diagram model. The graphical representation will illustrate the variables and their relationships while, in the next chapter, the underlying data structure of the diagram which will show the actual calculated probabilistic relationships. #### 5.2 Influence Diagram Overview This section provides a more specific description of influence diagrams than was presented in the literature review. Illustrative examples of solving influence diagrams will be presented in the discussion of discrete and continuous variables. As mentioned in the literature review, the basic elements of an influence diagram include chance nodes, decision nodes, value nodes, and deterministic nodes. Figure 1 shows how these nodes are represented graphically. - The chance node, a circle, represents a random variable in the influence diagram. An arc from one chance node into another chance node indicates a probabilistic dependence conditioned on the successor node by the predecessor node and the absence of an arc between two chance nodes indicates a conditional independence (Figure 2). The underlying data structure of the chance node contains the representative probability distribution. - The decision node, a square, can represent any decision in the model and contains the various alternatives involved in a particular decision. An arc into Figure 1. Graphic Representation of Nodes a decision node represents information available at the time of the decision (Figure 2). - The value node, a rounded rectangle, represents the value of the model based upon the resulting probabilistic outcomes and decisions made in the model. The data structure of the value node includes a utility table which is based upon the model's preceding probabilities and the decisions made. - The deterministic node, a double circle, represents a variable whose value becomes known once the outcomes of the preceding conditional variables are revealed. Certain transformations, or reductions, of the influence diagram can be accomplished which still preserve the informational value of the underlying data structure. These transformations involve the removal of nodes from the diagram until only a value node remains. This process reveals the maximum value of the model represented and the optimal decision policies to undertake based upon the maximization of utility. The four basic operations of node removal include: • Barren Node Removal: A barren node is defined as any node (except the value node) which has no successors. A barren node may Figure 2. Nodal Relationships simply be removed from the diagram without affecting the problem outcome because the fact that it has no successors implies that is has no influence either directly or indirectly on the value node. In order to solve a diagram any barren nodes created must be removed after each reduction operation. - Expectation: If a chance node directly precedes the value node and nothing else in a properly formed diagram it may be removed by conditional expectation. Expectation removes a node by summing the product of probabilities for the chance node's outcomes with the value node's value resulting from each outcome. A side effect is that all direct predecessors of the removed node are now direct predecessors of the value node. - Maximization: If a decision node is a direct predecessor of the value node and all other direct predecessors of the value node are also informational predecessors of the decision node then the decision node may be removed by maximizing the expected value of the value function conditioned on the other predecessors of the value node. A side effect of maximization is that some of the informational predecessors of the decision node may become barren nodes since the value node does not inherit any new predecessors from this reduction. - Arc Reversal: If an arc exists between two chance nodes and there is no other path between them then the arc may be reversed by ap- plying Bayes' Rule to the two node's probability distributions. A side effect is that the two nodes involved inherit each others predecessors, possibly creating new arcs in the diagram. This operation is often needed when solving influence diagrams to allow a chance node to be removed by expectation. (3:13) Graphic representations of these operations are summarized in Figure 3. Specific examples will be provided in the next chapter. Figure 3. Node Reductions #### 5.3 Predictive Variables The predictive variables available for use in the influence diagramming model were limited by the data availability from unclassified sources. The parameters used are as follows: - Launch Site The Soviets have three operational launch sites for placing satellite payloads into orbit: Plesetsk, Tyuratam, and Kapustin Yar. - Booster The Soviets currently possess 10 operational launch vehicles to support their space program: SL- 3, SL-4, SL-6, SL-8, SL-11, Sl-12, SL-13, Sl-14, Sl-16, and SL- 17. - Inclination The angle measured from the equatorial plane to the orbital plane. Inclination is measured in degrees. The inclination is 0 or 180 degrees for an equatorial orbit, 90 degrees for a polar orbit, less than 90 degrees for a satellite with an eastward (prograde) motion around the earth, and greater than 90 degrees for a satellite with a westward (retrograde) motion. - Apogee The distance, measured in kilometers, from earth to the farthest point in the satellite's orbit. - Perigee The distance, measure in kilometers, from earth to the closest point in the satellite's orbit. - Number of Payloads This variable represents the number of payloads that were deployed from the launch in question. - Argument of Perigee The angle measured in the orbital plane from the ascending node (equatorial crossing from south to north) to perigee. This angle is undefined for a circular orbit, since there is no perigee. The angle is also undefined for an equatorial orbit, since there is no ascending node. - Geosynchronous Position The position on the equator measured to the east from the Greenwhich meridian. The eccentricity and the period of the orbit are not used as predictive variables in the influence diagram model since their influences are captured by the values of apogee and perigee. The eccentricity and period are deterministic from apogee and perigee and could be represented in the model as deterministic nodes. However, these deterministic nodes would not provide any additional information towards the prediction of the satellite mission. Also, the launch time was not used as a predictive variable since the launch time is dependent upon the day of the year the launch occurred and the database used in this research does not sufficiently represent all the possible outcomes. ### 5.4 Probabilistic Relationships This section will describe how each of the variables influence each other and contribute towards the prediction of the satellite mission. Expert opinion was consulted to define these relationships. Interviews were conducted with Major T.S. Kelso (16), Mr. Nicholas L. Johnson (9), and Captain Ken Norton (21). Major Kelso has experience in the Satellite Control Network, specifically in the activation of the Consolidated Space Operations Center in Colorado Springs, CO and also in satellite operations at the Air Force Satellite Control Facility in Sunnyvale, CA. Mr. Nicholas Johnson, as mentioned earlier, is the Advisory Scientist for Teledyne Brown Engineering and has devoted a number of years to the study of the Soviet Space program. Captain Ken Norton spent five years in the Cheyenne Mountain Complex in support of the Space Surveillance Center. The collective inputs of these experts contributed to the formulation of the following relationships - Mission and Number of Payloads The number of payloads deployed, with the satellite in question, helps to predict the mission outcomes when multiple payloads are involved. Table 27 shows these various combinations. - Mission and Inclination The inclination of the orbit helps determine the Earth coverage of the satellite. The inclination specifies the greatest northern and southern latitudes that the satellite's orbit will trace on the ground of the Earth. For example, low altitude communication satellites have highly inclined orbits to provide coverage to the northern territories of the Soviet Union. Table 27. Multiple Payload Mission Combinations | Number of Payloads | Mission Combination | |--------------------|---------------------------------| | 2 | (2) Science | | 3 | (3) Navigation | | 3 | (2) Navigation
(1) Geodetic | | 3 | (2) Science
(1) Photographic | | 6 | (6) Low Altitude Communications | | 8 | (8) Low Altitude Communications | - Mission and Apogee The apogee plays an important role in determining the satellites field of view of the Earth and the eccentricity and period of the orbit. These characteristics are essential in the planning of a satellites orbit for a specific mission. For example, a Molniya orbit is characterized by a high eccentricity (high apogee and low perigee) which allows for an extended period of time and coverage over a specific geographic area. - Mission and Perigee The perigee is also used in determining the orbit's eccentricity and period. - Mission and Argument of Perigee The argument of perigee will be used in the model only to distinguish between the Molniya communication and the early warning satellites since the orbit of these two missions possess an identical apogee, perigee, and inclination. The argument of perigee determines where the satellite will geographically hover. The Molniya orbits have argument of perigee values in the range of 280 to 288 degrees, while the early warning satellites are from 316 to 318 degrees (9). - Mission and Geosynchronous Position The position on the equator of a geosynchronous satellite will be used to discriminate among the military and civilian communication missions and, also, the remote sensing missions. - Inclination and
Launch Site Due to range safety concerns, such as launching over populated areas and predicting the impact of first and second stage boosters, launch sites are restricted from launching directly into certain inclinations. Therefore, the desired inclination influences the particular launch site to be used. For example, inclinations greater than 90 degrees can only be launched from Tyuratam (11:9). - Apogee and Booster A booster must have enough lifting capability in order to place a payload into a specific apogee. The desired mission apogee influences the choice of boosters. - Booster and Site Once a booster is selected, the choice of launch sites might be limited, since certain boosters can only be launched from certain sites. For example, launch sites have a limited number of pads which are designed to specifically support certain boosters. Additionally, a launch site might possess booster specific ground equipment, support facilities, and personnel. ### 5.5 Influence Diagram Model With the predictive variables and their probabilistic relations defined, it is possible to construct the influence diagram. The software programs, AFIDS and InDia, allow construction of the diagram by choosing the type of node, labeling the node, specifying the number of outcomes, and positioning the node on the screen. Once the nodes have all been entered, the conditioning arcs must be drawn between the nodes to represent the probabilistic relationships. Next, the probability distributions are entered for each node. The user's manual for AFIDS explains the specific procedures required to construct the influence diagram (3) and InDia contains an online help directory. Figure 4 shows the influence diagram model. Figure 4. Influence Diagram Model ## 5.6 Summary The overview presented in the chapter introduces the basic elements and operations of an influence diagram. The predictive variables and their interrelationships were defined which allowed for the construction of the influence diagram. With the construction of the graphical model complete, the next step required is to calculate the probability distributions represented by the arcs in the influence diagram. ## VI. Discrete and Continuous Variable Analysis #### 6.1 Introduction Each of the model variables, presented in the last chapter, represent large masses of ungrouped data. To formulate probability distributions, this data must be grouped into classes. How these classes are determined depends on the nature of the data. Classifications that can be expressed as qualitative classes or categories are often referred to as discrete variables. If the range of the data for a random variable is either finite or countably infinite, then the variable is discrete. In contrast, continuous variables can assume any value in a given range or interval. This chapter will describe how influence diagrams manipulate discrete and continuous variables and also discuss the implications of using both types of variables in a single influence diagram model. Illustrative examples will be presented to demonstrate the data manipulation procedures conducted by the influence diagramming software. Finally, the calculated probability distributions will be presented. #### 6.2 Discrete Variables The influence diagram model consists of five discrete variables. Table 28 lists these variables along with their discrete classes. The geosynchronous position was assumed to be discrete due to the limited number of available positions on the equator and the registration requirements for such orbits. The following example demonstrates how influence diagrams manipulate discrete variables in the solution process. One of the possible discrete variables that could be applied to determining the mission of Soviet satellite might be *launch site*. The relationship representing the probability that a certain satellite mission is launched from a particular Soviet site is represented by the simple influence diagram shown in Figure 5. This figure Table 28. Discrete Model Variables and Their Classes | Mission | Launch
Site | Booster | No. of
Payloads | Geosync
Position | |----------------|----------------|---------|--------------------|---------------------| | | | | | | | Photographic | Tyuratam | SL-3 | 1 | 35 | | Communication | Plesetsk | SL-4 | 2 | 40 | | Military Comm | Kapustin Yar | SL-6 | 3 | 45 | | Navigation | | SL-8 | 6 | 49 | | Meteorology | | SL-11 | 8 | 53 | | Geodetic | | SL-12 | | 70 | | Early Warning | | SL-13 | | 80 | | ELINT | | SL-14 | | 85 | | Ocean Recon | | SL-16 | | 90 | | Minor Military | | SL-17 | | 95 | | ASAT | | | | 96.5 | | LV Test | | 1 | | 99 | | Remote Sensing | | | | 103 | | Scientific | | | | 128 | | Manned | | | | 140 | | Planetary | | 1 | | 190 | | Unknown | | | | 335 | | | | | | 336 | | | | | | 346 | | | | | | 349 | represents the *influence* that the mission has on the location of the Soviet launch. This diagram is the top level of the influence diagram. The secondary level includes the data and the probabilistic relationships between the variables. The *chance node*, labeled MISSION, possesses the *prior* probability distribution for specific missions [P(Mission)]. These prior probabilities, for the example, are listed in Table 29. Prior probabilities are those probabilities established before obtaining additional information from other variables in the model. Prior probability formulation could be based upon historical data, intelligence information, the world situation, the age of particular Soviet space platforms, etc. For example, if it is known that a critical Soviet communication satellite has malfunctioned, then there would be a high probability that the Soviets will launch a replacement satellite. Figure 5. Influence Diagram Example Table 29. Prior Probabilities | MISSION | PROBABILITY | | |---------------|-------------|--| | Communication | 0.70 | | | Photographic | 0.20 | | | Navigation | 0.10 | | The chance node labeled **LAUNCH SITE** possesses the *likelihood probability* distribution that shows, for a given mission, the probability that it was launched from a particular site [P(Launch Site/Mission)]. The formulation of this probability distribution is based upon historical data. For the example problem, the likelihood distribution is listed in Table 30. Table 30. Likelihood Probabilities | | LAUNCH SITE | | | |---------------|-------------|------|------| | MISSION | TT | PL | KY | | Communication | 0.80 | 0.20 | 0.00 | | Photographic | 0.40 | 0.55 | 0.05 | | Navigation | 0.50 | 0.40 | 0.10 | The example influence diagram could also be represented by the probability tree in Figure 6. However, this probability tree only represents two variables with three classes for each variable. This demonstrates how an influence diagram simplifies the graphical representation of the relationships between variables. The complexity of the probability tree significantly increases as more variables and more classes are added. If our actual model was constructed into a probability tree, it would have to contain each predictive variable and every possible combination of outcomes. Influence diagramming provides a more efficient means of graphically representing the model and manipulating the probability distributions. The graphical representations and the data presented thus far in this discrete example would be a compilation of information available prior to a Soviet launch. When a Soviet launch does occur, the relationship of interest would then be as represented in Figure 7. This figure represents how the information of **LAUNCH SITE** influences the mission probability. If it is known where the launch occurred, this information would help to determine the distribution representing the possible missions associated with the launch. Therefore, the direction of the arc in Figure 5 must be reversed as represented in Figure 7. When reversing an arc between two nodes, each node inherits the predecessors of each other. In the example, there are Figure 6. Probability Tree only two nodes, so it is possible to simply reverse the arc. However, Figure 8 shows how new arcs can be created when reversing an arc between two nodes. Figure 7. Arc Reversal Figure 8. Arc Reversal Between Y and Z Node X influences Node Y and Node Y influences Node Z. After reversing the arc between Node Y and Node Z, an arc is created from Node X to Node Z. Node Z inherited the predecessor, Node X from Node Y. The reversing of an arc affects the probability distributions of the second level of the influence diagram. The arc reversal between two chance nodes is accomplished by applying Bayes' Theorem (5:61): $$P(A_k/B) = \frac{P(A_k \cap B)}{P(B)} = \frac{P(B/A_k)P(A_k)}{\sum_{i=1}^n P(B/A_i)P(A_i)}; k = 1, \dots, n$$ Multiplying the *prior* probabilities (Table 29), P(Mission), and the *likelihood* probabilities (Table 30), P(Launch Site/Mission), gives the *joint* distribution (Table 31). This distribution represents the influence of the prior probabilities onto the likelihood probabilities. Summing the columns of the *joint* distribution gives the *preposterior* probabilities for each launch site (Table 32), P(Launch Site). Table 31. Joint Probabilities | | LAUNCH SITE | | | |---------------|---------------------------|--------------------|------------------------| | MISSION | TT | PL | KY | | Communication | (0.70)x (0.80) = 0.56 | (0.70)x(0.20)=0.14 | (0.70)x(0.00)=0.00 | | Photographic | (0.20)x(0.40)=0.08 | (0.20)x(0.55)=0.11 | (0.20)x (0.05) =0.01 | | Navigation | (0.10)x(0.50)=0.05 | (0.10)x(0.40)=0.04 | (0.10)x (0.10) =0.01 | Table 32. Preposterior Probabilities | LAUNCH SITE | PROBABILITY | | |-------------|-------------|--| | TT | 0.69 | | | PL | 0.29 | | | KY | 0.02 | | The new probability tree is shown if Figure 9. The tree has been "reversed" and now shows how the information of the **LAUNCH SITE** influences the outcome of the **MISSION**. The preposterior probability distribution is the new
distribution for the chance node LAUNCH SITE in Figure 7. Dividing the joint distribution by the preposterior probabilities yields the posterior distribution (Table 33), P(Mission/Launch Site), which is now the secondary level of the chance node labeled MISSION. The posterior probability distribution is a revision of the prior probability distribution based upon additional information. Once the site of a particular launch is Figure 9. Probability Tree After Arc Reversal Table 33. Posterior Probabilities | | LAUNCH SITE | | | |---------------|--------------------|--------------------|--------------------| | MISSION | TT | PL | KY | | Communication | (0.56)/(0.69)=0.81 | (0.14)/(0.29)=0.48 | (0.00)/(0.02)=0.00 | | Photographic | (0.08)/(0.69)=0.12 | (0.11)/(0.29)=0.38 | (0.01)/(0.02)=0.50 | | Navigation | (0.05)/(0.69)=0.07 | (0.04)/(0.29)=0.14 | (0.01)/(0.02)=0.50 | known, Table 33 is able to provide the probabilities for the possible missions associated with that launch. In our example, if the launch site is known to be *Tyuratam* (TT), then the possible missions associated with the launch are Communication, Photographic Reconnaissance, and Navigation with probabilities of 0.81, 0.12, and 0.07, respectively. Table 34 shows how the new information of knowing the actual launch site has affected the probability outcome for the possible satellite missions. The new distribution incorporates this known information into the prediction model. Table 34. Mission Probabilities Comparison | MISSION | Prior To Launch | With Launch Site Info | |---------------|-----------------|-----------------------| | Communication | 0.70 | 0.81 | | Photographic | 0.20 | 0.12 | | Navigation | 0.10 | 0.07 | The above example demonstrates how known information from a single variable (launch site) is incorporated into the model. More information should then be obtained from additional predictive variables. The basic purpose of attempting to incorporate more evidence from additional predictive variables is to reduce the uncertainty, thereby, improving the predictive power of the model. #### 6.3 Continuous Variables Now that discrete variables have been discussed, the attention focuses on the use of continuous variables. In the Soviet mission prediction model there are four continuous variables that are considered. These variables and their ranges are listed in Table 35. For discrete variables, determination of the probability distribution classes is rather trivial since the classes are determined by the unique possible outcomes of the variable (Launch Site: Tyuratam, Plesetsk, and Kapustin Yar). However, for continuous variables, defining the probability classes is significantly more difficult since the variables can assume any value in a specified range (Inclination: any value between 0 and 180 degrees). Before these class intervals can be determined, the probability density function of the continuous variable must first be defined. Table 35. Continuous Model Variables | Variable | Range | |---------------------|-------------------| | Apogee | 170 to 202,500 km | | Perigee | 160 to 35,800 km | | Inclination | 0 to 100 degrees | | Argument of Perigee | 0 to 360 degrees | 6.3.1 Probability Density Function. The definition of a probability density function is as follows: Let X be a continuous random variable. Then a probability distribution or probability density function (p.d.f.) of X is a function f(x) such that for any two numbers a and b with $a \le b$, $$P(a \le X \le b) = \int_a^b f(x)dx$$ That is, the probability that X takes on a value in the interval [a, b] is the area under the graph of the density function. In order that f(x) be a legitimate p.d.f., it must satisfy the two conditions - 1. $f(x) \leq 0$ for all x - 2. $\int_{-\infty}^{\infty} f(x)dx$ = area under the entire graph of f(x) = 1 (5:125) This functional form of the probability distribution is not easy to derive or ascertain from the observational data. This subsection will discuss various methods of approximating the probability density function empirically from the historical satellite data. 6.3.1.1 Graphical Methods. Graphs provide a useful means of selecting a probability distribution to describe data. Frequency Diagrams of the observed data can be plotted and then visually compared to a known density function. Table 36 lists the sample inclination data for Soviet Early Warning satellites. Using the statistical software package, STATGRAPHICS, a frequency tabulation table can be generated as in Table 37. Plotting the frequency histogram for this inclination data yields Figure 10. Examination of the graph reveals that the data is approximately normally distributed. Table 36. Sample Inclination Data | Early Warning Satellite Inclination Data | | | | | |--|---------|-------------|---------|--| | Data Number | Degrees | Data Number | Degrees | | | 1 | 62.76 | 13 | 62.92 | | | 2 | 62.83 | 14 | 62.93 | | | 3 | 62.85 | 15 | 62.94 | | | 4 | 62.85 | 16 | 62.97 | | | 5 | 62.86 | 17 | 62.98 | | | 6 | 62.87 | 18 | 62.98 | | | 7 | 62.90 | 19 | 62.99 | | | 8 | 62.90 | 20 | 62.99 | | | 9 | 62.90 | 21 | 63.03 | | | 10 | 62.91 | 22 | 63.04 | | | 11 | 62.91 | 23 | 63.05 | | | 12 | 62.91 | | | | Probability Plotting is another graphical method which determines whether the data conforms to a hypothesized distribution based on a subjective visual examination of the data. This technique requires the use of special graph paper, known as *probability paper*, that is designed specifically for the hypothesized distribution. To plot the observed data on this paper, the following must be accomplished: Table 37. Frequency Tabulation | Class | Lower
Limit | Upper
Limit | Midpoint | Freq. | Rel.
Freq. | Cum.
Freq | Cum Rel
Freq | |-------|----------------|----------------|-------------|----------|---------------|--------------|-----------------| | at or | below | 62.70 | | 0 | .0000 | 00 | 0.0000 | | 1 | 62.70 | 62.76 | 62.73 | 0 | .0000 | 00 | 0.0000 | | 2 | 62.76 | 62.81 | 62.79 | 1 | .0435 | 01 | 0.0435 | | 3 | 62.81 | 62.87 | 62.84 | 5 | .2174 | 06 | 0.2609 | | 4 | 62.87 | 62.93 | 62.90 | 7 | .3043 | 13 | 0.5652 | | 5 | 62.93 | 62.99 | 62.96 | 5 | .2174 | 18 | 0.7826 | | 6 | 62.99 | 63.04 | 63.01 | 4 | .1739 | 22 | 0.9565 | | 7 | 63.04 | 63.10 | 63.07 | 1 | .0435 | 23 | 1.0000 | | above | 63.10 | | | 0 | .0000 | 23 | 1.0000 | | Mean | = 62.92 | 48 Stand | lard Deviat | ion = .0 | 719766 | Median | = 62.91 | Figure 10. Example Frequency Histogram If there are N observations x_1, x_2, \dots, x_N , the mth value among the N observations (arranged in increasing order) is plotted at the cumulative probability m/(N+1). (1:262) If the hypothesized distribution adequately describes the data, the plotted points will fall approximately along a straight line; if the plotted points deviate significantly from a straight line, then the hypothesized model is not appropriate. Figure 11 shows the STATGRAPHICS generated normal probability plot for the early warning inclination data. Since the data points of the probability plot are approximately linear, without any significant deviations, it is possible to conclude that the data is normally distributed. Figure 11. Normal Probability Plot 6.3.1.2 Statistical Methods. Using the above graphical methods to determine the probability density function is somewhat subjective to the examiner of the graph. Statistical methods can be applied to further support or deny the hypoth- esized distribution for the observed data. These methods are known as "goodness-of-fit" tests. One such procedure for testing the hypothesis of a specific distribution is the Chi-square (χ^2) test. The test procedure consists of obtaining a random sample of size n of the random variable X, whose probability density function is unknown. These n observations are grouped into a frequency histogram, having k intervals. Letting n_i be the observed frequency in the ith class interval. From the hypothesized probability distribution, the expected frequency is computed for each interval, denoted by e_i . The test statistic is (1:274): $$\chi_o^2 = \sum_{i=1}^k \frac{(n_i - e_i)^2}{e_i}$$ χ_o^2 approximately follows the chi-square distribution (χ_f^2) with (f = k - p - 1) degrees of freedom, where p represents the number of parameters of the hypothesized distribution estimated by sample statistics. This approximation improves as n increases. If $\chi_o^2 > \chi_{\alpha,f}^2$, then the hypothesis that X conforms to the hypothesized distribution is rejected. Table 38 shows the *Chi-square goodness-of-fit* test for the example inclination data. Testing with a significance level of .05, yields the conclusion that the data is normally distributed with a mean of 62.9248 and a standard deviation of .0719766. Another statistical method used for distribution validation is the Kolmogorov-Smirnov (K-S) test. In the K-S goodness-of-fit test, the cumulative frequency of the observed data is compared to the distribution function of the hypothesized distribution. The sample data of size n is sorted in ascending order and a step-wise Table 38. Chi-Square Test for Relative Goodness-of-fit | Lower
Limit | Upper
Limit | Observed
Frequency | Expected
Frequency | Chi-square | |-------------------|-----------------------|----------------------------------|-----------------------|--------------------| | below | 62.81 | 1 | 1.14 | 0.017 | | 62.81 | 62.87 | 5 | 4.01 | 0.244 | | 62.87 | 62.93 | 7 | 6.99 | 0.000 | | 62.93 | 62.99 | 5 | 6.98 | 0.562 | | 62.99 | 63.04 | 4 | 2.74 | 0.579 | | 63.04 | above | 1 | 1.14 | 0.017 | | | | | | | | | | | | $\chi_o^2 = 1.419$ | | $\chi^2_{.05,6-}$ | $\frac{1}{2-1} = 7.8$ | $315 < \chi_o^2 \longrightarrow$ | Distribution | is Normal | cumulative frequency function is developed as follows: $$S_n(x) = \begin{cases} 0 & x < x_1 \\ \frac{k}{n} & x_k \le x < x_{k+1} \\ 1 & x \ge x_n \end{cases}$$ Using the above
function (1:278), $S_n(x)$ is plotted along with the hypothesized distribution function, F(x), as shown in Figure 12. To test the goodness-of-fit of the data to the hypothesized distribution, the maximum difference between $S_n(x)$ and F(x), over the entire range of the observational data, must be calculated. This measure of discrepancy between the observed data and the hypothesized distribution is denoted by (17:199): $$D_n = \stackrel{sup}{x} |F(x) - S_n(x)|$$ This maximum difference, D_n , is then compared to a critical value D_n^{α} , where n is the sample size and α is the significance level. If $D_n < D_n^{\alpha}$, then the observed data fits the hypothesized distribution. The K-S test was run on the early warning inclination data using STATGRAPHICS and obtained a D_n value of 0.104343, which is less than the $D_{23}^{.05}$ critical value of .278 (1:385). Therefore, the normal model N(62.9248, 0.0719766) is verified at the .05 significance level. Figure 12. Graph for Kolmogorov-Smirnov Test(1:278) 6.3.2 Determination of Variable Classes. Once the probability density functions for the continuous variable have been defined, it is possible to graph them along the range of values for that specific variable to identify conflicts when determining classes for that variable. An example of a section from the apogee range might look like Figure 13. Having the defined the probability density functions for the continuous variable allows for the probability calculation of any defined interval in the range of the data. The next step, then, is to define the intervals or classes for each continuous variable in the model. Figure 13 showed that the probability density functions may overlap. This causes a problem when attempting to determine where the mission class intervals are to be drawn. If the parameter of interest falls into this region of overlap, it causes a conflict in determining the mission of the unknown satellite. Figure 13. Example Section of PDF Graph for Apogee Figure 14 shows a possible region of conflict between two missions in the perigee range (distributions are approximated to allow description of the process). Due to the overlapping density functions in Figure 14, there is no clear-cut value of perigee that can be used to distinguish the early warning satellites from the civilian communication satellites. Therefore, a method must be formulated to resolve such conflicts in a manner optimal to the user of the model. Hypothesis testing addresses the important question of how to choose among alternative propositions or courses of action, while controlling and minimizing the risks of wrong decisions. Consider the process of determining a satellite's mission from a particular value of the parameter *perigee*, which is in the region of conflict in Figure 14. Assuming that in this particular range of perigee values, the only possible missions are early warning and civilian communication, the decision maker must decide which is the correct mission. Using the language of hypothesis testing, the null hypothesis being tested, H_o , is that the satellite has an early warning mission. The alternative hypothesis, H_a , is that the satellite is not early warning and is used for civilian Figure 14. Critical Area in Overlapping Density Functions communication. After receiving the information on the perigee of the satellite, if the decision maker concludes that the satellite is early warning, then the null hypothesis is accepted. On the other hand, if the decision maker concludes that the satellite is not early warning, then the null hypothesis is rejected. Analyzing the situation that results, after the decision maker has reached a conclusion, reveals that four possibilities exist. The first two possibilities pertain to the case in which the null hypothesis H_o is true, and the second two pertain to the case in which the null hypothesis is false. The possibilities are as follows: - 1. The satellite is early warning (H_o is true), and the decision maker concludes early warning (H_o is accepted); hence, the correct decision has been made. - 2. The satellite is early warning $(H_o$ is true), but the decision maker concludes not early warning $(H_o$ is rejected); hence, the wrong decision has been made. - 3. The satellite is not early warning (H_o is false), and the decision maker concludes not early warning (H_o is rejected); hence, the correct decision has been made. 4. The satellite is not early warning (H_o is false), but the decision maker concludes early warning (H_o is accepted); hence, the wrong decision has been made. In cases 1 and 3, the decision maker reaches the correct decision; in cases 2 and 4, an error is made. In hypothesis testing, two types of errors are possible: A type I error consists of rejecting the null hypothesis H_o when it is true. A type II error involves not rejecting H_o when H_o is false. (5:280) Note that under the current legal system, a person is assumed innocent (H_o : Person is innocent) until proven guilty (H_a : Person is guilty). In this situation, a Type I error is considered far more serious than a Type II error; it is worse to convict an innocent man than to let a guilty one go free. If the null hypothesis had been that the defendant was guilty, then the meaning of the Type I and Type II errors would have been reversed. In the statistical formulation of the hypotheses, how the decision maker chooses to exercise control over the two types of errors is a basic guide in stating the hypotheses to be treated. Controlling these errors will now be discussed. The cases for the early warning versus civilian communication example are summarized in Table 39. Table 39. Type I and Type II Errors | Action | State of Nature | | | |-----------------------------|-------------------------------|--------------------------------|--| | Concerning Hypothesis H_o | H_o is True (early warning) | H_o is False (civilian comm) | | | Accept H_o | Correct Decision | Type II
Error | | | Reject H_o | Type I
Error | Correct
Decision | | Figure 15 shows the areas of Type I and Type II errors for the example hypothesis test, if the class division, or *critical value*, is made at a perigee equal to 623 km. Figure 15. Type I and Type II Errors Since the probability density functions of perigee for both missions are known, it is possible to calculate the areas representing the Type I and Type II errors of the hypothesis. For example, if the early warning-perigee probability density function is normally distributed with a mean $\bar{X}=614$ and a standard deviation $\sigma=5$, then the probability of a Type I error is calculated as follows (5:283): $$\alpha = P(\text{type I error}) = P(H_o \text{ is rejected when sat is early warn})$$ $$\alpha = P(\bar{X} \ge 623 \text{ when } \bar{X} \sim \text{normal with } \mu_{\bar{X}} = 614, \sigma_{\bar{X}} = 5)$$ $$\alpha = 1 - \Phi(\frac{623 - 614}{5}) - 1 - \Phi(1.8) = .0359$$ Correspondingly, if the probability density function for the perigee of civilian communication satellites is normally distributed with a mean $\bar{X}=632$ and a standard deviation $\sigma = 5$, then the probability of a Type II error is calculated as follows (5:283): $$\beta = P(\text{type II error}) = P(H_o \text{ is accepted when sat is com-civ})$$ $\beta = P(\bar{X} < 623 \text{ when } \bar{X} \sim \text{normal with } \mu_{\bar{X}} = 632, \sigma_{\bar{X}} = 5)$ $\beta = \Phi(\frac{623-632}{5}) = \Phi(-1.8) = .0359$ The above calculations show the probability of a Type I and Type II error when the critical value of perigee was equal to 623 km. Table 40 shows how the Type I and Type II errors vary when the critical value is adjusted. Table 40. Error Effects From Critical Value Adjustment | Critical Value | Type I Error | Type II Error | |----------------|--------------|---------------| | 621 | 0.0808 | 0.0139 | | 622 | 0.0548 | 0.0228 | | 623 | 0.0359 | 0.0359 | | 624 | 0.0228 | 0.0548 | | 625 | 0.0139 | 0.0808 | | 626 | 0.0008 | 0.1151 | | 627 | 0.0005 | 0.1587 | Figure 15 and Table 40 show that reducing the probability of one type of error increases the probability of the other type of error occurring, and vice versa. It is up to the decision maker to decide upon the degree of risk that is acceptable for each type of error. If the trade-off between the Type I and Type II errors is not acceptable, the decision maker also has a third alternative of not deciding between the alternatives. For example, once the minimum acceptable error of each type is independently determined, then the critical values of perigee can be assigned. Since there would be two independent critical values separating the mission classes, a third region is created in the conflict area. Figure 16 shows a Type I error of 0.0139, a Type II error of 0.0228, and a third region in which the decision maker does not arrive at a conclusion. In this situation, a decision maker might choose to wait for further information before taking any action. This concept could be applied in the construction of an Anti-Satellite (ASAT) engagement decision model. Figure 16. Third Decision Alternative Suppose that the United States is in a hostile conflict with the Soviet Union and the U.S. must decide whether or not to launch an ASAT weapon at an unknown satellite. Based upon the perigee parameter, the decision maker will decide which course of action to take. Suppose the decision maker has chosen the critical perigee values in Figure 16 and decides that if the satellite perigee falls into the early warning range (600-622), the ASAT will be fired, for a perigee value in the civilian communication range (625-645), the ASAT will not be fired, and for a perigee value in the uncertainty range (622-625), more information will be obtained before deciding whether to fire the ASAT. Table 41 summarizes these actions. The "Don't Shoot" option represents the decision maker's confidence
that the satellite is not a possible ASAT target and additional information will not required or considered. However, the "Wait" option represents the need for additional information before a decision can be reached. Table 41. Possible Actions Based on Perigee Information | Perigee Range | Action To Be Taken | |---------------|--------------------| | 600 - 622 km | Shoot | | 622 - 625 km | Wait | | 625 - 645 km | Don't Shoot | The decision policy in Table 41 might not be the optimal decision policy. An influence diagram can help to determine the optimal policy. To incorporate this decision into an influence diagram, the decision maker assigns utility values to the all the possible outcomes. For example, firing an ASAT at an early warning satellite may be worth a utility value of 100 (mission is accomplished), not firing an ASAT at a early warning satellite may be worth zero (failure to accomplish mission), while firing an ASAT at a civilian communication satellite is worth 20 (ASAT resource expended, but Soviets lose some communication capability). The decision maker assign relative utility values to each possible outcome. The influence diagram representing this model is presented in Figure 17. The arc from the PERIGEE chance node to the decision node, ASAT, represents the information available at the time of the decision. The MISSION node contains the prior probabilities for each mission and the perigee node contains the likelihood probabilities of perigee conditioned on mission. The two arcs into the value node, RESULTS, shows that both the decision made and the probability of the mission affect the value of the outcome. The value node contains the utility values that the decision maker assigns to each possible outcome. To illustrate the use of this model, assume the following information is entered into the data level of the influence diagram: Figure 17. ASAT Decision Model Based on Perigee • MISSION NODE - The chance node contains the prior probabilities for the early warning and civilian communication missions. Table 42. Prior Probability of Mission | Early Warn | Comm-Civ | | |------------|----------|--| | 0.80 | 0.20 | | • PERIGEE NODE - This chance node contains the likelihood probabilities of perigee conditioned on mission. Table 43. Likelihood Probabilities for Perigee | | PERIGEE RANGE | | | | |------------|---------------|------------|------------|--| | MISSION | 600-622 km | 622-625 km | 625-645 km | | | Early Warn | 0.95 | 0.04 | 0.01 | | | Comm-Civ | 0.02 | 0.06 | 0.92 | | ASAT NODE - This decision node contains the alternatives available to choose from conditioned on the outcome of the perigee. Table 44. Decision Alternatives • Utility Node - This value node contains the utility associated with each possible outcome. The value node is conditioned on the probability of the mission and the decision on the ASAT. Suppose that the utility values determined by the decision maker are as shown in Table 45. Table 45. Value Table for Utility Node | | DECISION ALTERNATIVES | | | | |------------|----------------------------|-----|----|--| | MISSION | Shoot Don't Shoot Wait | | | | | Early Warn | 100 | 0 | 20 | | | Com-Civ | 20 | 100 | 40 | | ## Solving the Model: 1. Arc Reversal between MISSION and PERIGEE - The first step required to solve the influence diagram is to reverse the arc from MISSION to PERIGEE using Bayes' Theorem. This allows the joint capture of the probability information from the prior and likelihood distributions. After the reversal, the PERIGEE node contains the preposterior distribution and the MISSION node contains the posterior distribution listed in Table 46. Table 46. Posterior Distribution for Mission | PERIGEE | MISSION | | | |------------|------------|-----------|--| | RANGE | Early Warn | Comm- Civ | | | 600-622 km | 0.995 | 0.005 | | | 622-625 km | 0.727 | 0.273 | | | 625-645 km | 0.042 | 0.958 | | 2. Removal of MISSION by Expectation - The next step is to remove the chance node MISSION by Expectation. This process involves the summation of the product of the posterior probabilities of the MISSION outcomes with the UTILITY node's values for each outcome and yields Figure 18. This process is accomplished by multiplying the posterior probability matrix, Table 46, with the matrix formed by the utility values, Table 45, resulting in value table now conditioned on the outcome of perigee and the ASAT decision, Table 47. Figure 18. After Removal of MISSION by Expectation 3. Removal of ASAT by Maximization - Removal of the decision node ASAT is accomplished by maximizing the value of the utility node for each value of Table 47. Value Table After MISSION Expectation | PERIGEE | DECISION ALTERNATIVE | | | |------------|----------------------------|-------|-------| | RANGE | Shoot Don't Shoot Wait | | | | 600-622 km | 99.60 | 00.50 | 20.10 | | 622-625 km | 78.16 | 27.30 | 25.46 | | 625-645 km | 23.36 | 95.80 | 39.16 | perigee. Therefore, UTILITY value node will contain the values in Table 48 and the decision node ASAT will contain the optimal decision policy conditioned on the outcome of perigee, Table 49. Therefore, once the actual measurement of perigee becomes available, the decision maker has the optimal policy. This shows that the model is lurking, like an expert system, waiting for the additional information required to choose the optimal decision. Table 48. Maximum Values for UTILITY Conditioned on PERIGEE | PERIGEE
RANGE | MAX UTILITY
VALUE | |------------------|----------------------| | 600-622 km | 99.6 | | 622-625 km | 78.16 | | 625-645 km | 95.8 | Table 49. Optimal Decision Policy Conditioned on PERIGEE | PERIGEE
RANGE | DECISION
POLICY | |------------------|--------------------| | 600-622 km | Shoot | | 622-625 km | Shoot | | 625-645 km | Don't Shoot | As a result of removing the decision node by maximization, the influence diagram becomes Figure 19. Figure 19. After Removal of ASAT by Maximization The above decision model represents only a very small portion of a complete model. The complete range for parameter perigee would have be analyzed and divided into classes and the model would also have to account for all possible Soviet satellite missions. The Soviet satellite prediction being developed in this research could be converted into an ASAT decision model by adding the decision node and the value node for utility. For example, if the optimal decision in the model was to wait for further information, the other predictive variables in the prediction model could provide this information needed by the decision maker. Development of a complete model would require an extensive analysis of the decision maker's thought process to determine the classes for each continuous variable (Acceptable Type I and Type II errors) and assigning utility values for each possible outcome. Additionally, a complete knowledge base on Soviet satellites would have to be compiled and incorporated into the model. Other nodes could also be included in the model. For example, a chance node could be added that contained the reliability of the ASAT weapon. Once the information is properly organized and incorporated into the model, the decision maker will have an effective and easy to use decision tool. # 6.4 Discretizing Continuous Variables Currently, influence diagramming is limited to single type variable models. That is, the influence diagram must be constructed entirely of discrete variables or entirely of continuous Gaussian variables. A mix of discrete and continuous variables in a single model is not allowed. Moreover, the influence diagramming software programs used in this research are limited to discrete variables. Since the research model consists of both variable types, it is necessary to approximate a continuous variable as a discrete one. Discretizing allows the determination of probability classes for a continuous variable by choosing discrete values along the range of the continuous data and using these values to establish discrete class intervals. Each interval is then assigned a discrete number to represent that specific range of the interval. Once these "discretized" class intervals have been defined, it is possible to calculate the probabilities for each of the classes with the historical data. In this research model, the probability distributions functions were not calculated for each mission of each variable. Rather, once the variables were discretized, the probabilities for each interval were calculated based on the total number of observations within that interval. 6.4.1 Considerations. Discretizing allows the decision maker to strategically choose the class intervals which allow for quick identification of a satellite's mission. Partitioning of intervals can be accomplished by examining the mission profiles for each of the centinuous variables and the range of the historical data versus mission. Expert knowledge is also essential to identify ranges in the data where mission distinctions can be made. For example, the Ocean Reconnaissance missions are placed in inclinations of approximately 65 degrees. If a class interval of 64.99 to 65.06 degrees was established for inclination, it would include only ocean reconnaissance missions. However, when using this interval in the application of the predictive model, if the inclination of an unknown satellite had an inclination which fell into this interval, the model would identify it as an ocean reconnaissance satellite. However, photo reconnaissance and navigation satellites are often placed in inclinations of 64.8 and 64.9 degrees. If these satellites were placed in an orbit one-tenth of a degree above nominal or the measurement of inclination was off by the same amount, the model would still identify the mission as ocean reconnaissance. Therefore, in discretizing the class intervals for the continuous variables, the decision maker must be careful not to make the interval too small. The reverse is also true. If the
interval is too wide and captures many different missions, then the class interval does not effectively distinguish among the missions. The decision maker must avoid choosing an interval which limits the possibilities for slight differences in the orbital parameter and does not contribute towards distinguishing mission types. Another area of concern in discretizing a range of continuous variables involves those intervals in the range where no observations occur. For example, in the apogee range from 2,600 to 17,000 km there were no observed data points since the Soviets do not utilize orbits that occupy an apogee value in this range. Though such a range may not be currently used, there is always a possibility of future use by a newly developed orbit or the possibility of an anomalous orbit injection into such a range. Therefore, a decision maker must assess the various mission probabilities for these ranges. For example, higher probabilities might be assigned to missions with orbits above this range, since they may fail to reach the higher orbit and very small probability values might be assigned to the low orbit missions. Some type of distance heuristic may be applied which assigns higher probabilities to those missions closer to such intervals. For the purpose of this research, since the likelihood of an occurrence in such ranges is very small, an equal probability value will be assigned for each mission. Additionally, single observations isolated from other values must be carefully considered. Such observations might occur due to an anomalous orbit or a unique, one-time-only, mission, which places the satellite in an orbit not normally occupied. The parameter measured might then occur in an interval which is usually not occupied. For example, in the perigee range, the lowest observation occurred at 120 km, due to an anomalous launch of an ocean reconnaissance satellite. The next perigee observation was at 159 km. Normally, since no orbits under 150 km are utilized, the class interval of 150 and below might be established and any observation in the interval would be considered *unknown*. However, in using this interval, any observed value for perigee below 150 km would be considered an ocean reconnaissance mission due to the single observation at 120 km. Even though such an error might occur, the observation can not be cast aside since there is a probability that the type of *systematic* error which placed that satellite in that particular orbit might occur again. One possible way of dealing with this problem is to establish a small interval around the observed value so that if such an error reoccurred, it would not be considered unknown. When a large continuous range of data does not have any distinct breaks where an interval can be drawn, it is possible to simply break the range into several intervals (but do not violate the above considerations). Even though this technique does not effectively distinguish mission type for that particular variable, it limits the number of possible missions in the interval and allows other variables in the model to make the mission determination. - 6.4.2 Class Interval Determinations. The thought process used to determine the class intervals is now demonstrated. - Inclination Examining the mission profiles provided in Chapter IV and the range of the inclination data versus mission for the historical data, sorted ascendingly on inclination, is required in discretizing the continuous variable. The very low inclinations of the geosynchronous satellites do not exceed 2 degrees of inclination. Therefore, the low class interval for inclination was established as 0 to 3 degrees. The next set of inclinations jump to 50 degrees, so the interval 3 to 50 degrees will be considered unknown with each mission having an equal likelihood of occurring. The next interval is established at 51 degrees to separate manned missions from minor military and a photo reconnaissance mission. The next break in the group of inclination data is between 51.86 and 62.76 degrees with the range below this break containing mostly manned missions. The interval from 53 to 62 degrees will be considered unknown. The upper limit for the next interval will be 64 degrees since a large group of photo reconnaissance satellites begin at 64.75 degrees. The interval contains mostly early warning and Molniya communication satellites. The next limit is established at 65 degrees to create the interval 65 to 66 degrees capturing a group of ocean reconnaissance and minor military satellites. An interval from 70 to 72 degrees is needed to separate ELINT satellites from the higher inclined photo reconnaissance satellites. From 73 to 75 degrees of inclination the range is dominated by the low altitude communication satellites. Another section of unoccupied inclinations follows, from 75 to 81 degrees. The next break in the data occurs at approximately 83 degrees, establishing the interval 81 to 84 degrees. Since the next observation is not until 97.02 degrees, 84 to 96 degrees will be considered unknown. The maximum observation of inclination was 99.02 degrees from a remote sensing satellite. Therefore, the final interval from the observed data will be 96 to 100 degrees. Any satellite exceeding this interval will be considered unknown. Table 50 summarizes the above intervals. Note that a class interval number is also assigned to each interval. This is an additional required step when tailoring the continuous variable to the software programs AFIDS and InDia, which only accept discrete classes. Therefore, when an observation of a continuous variable is identified, the class interval number which possess the variable is input to the model. Table 50. Class Intervals for Inclination | Class | Interval | | | |--------|--------------------------|----|-------------| | Number | (Upper Limit is \leq) | | | | 1 | 0 | to | 3 degrees | | 2 | 3 | to | 50 degrees | | 3 | 50 | to | 51 degrees | | 4 | 51 | to | 53 degrees | | 5 | 53 | to | 62 degrees | | 6 | 62 | to | 64 degrees | | 7 | 64 | to | 65 degrees | | 8 | 65 | to | 66 degrees | | 9 | 66 | to | 70 degrees | | 10 | 70 | to | 72 degrees | | 11 | 72 | to | 73 degrees | | 12 | 73 | to | 75 degrees | | 13 | 75 | to | 81 degrees | | 14 | 81 | to | 84 degrees | | 15 | 84 | to | 96 degrees | | 16 | 96 | to | 100 degrees | | 17 | 100 | to | 180 degrees | - Perigee The first observation in the sorted data range of perigee, as discussed earlier, was the result of a failed upper stage. This single observation was given a forty kilometer interval from 110 to 130. The intervals from 0 to 110 km and 130 to 150 km are unoccupied. No significant breaks in the data occur over the range from 150 to 1,000 km. Photo reconnaissance satellites occupy the 150 to 400 range. The interval of 150 to 200 captures some navigation and launch vehicle test missions. 200 to 300 contains some science and ocean reconnaissance missions. Manned missions occur in the next established interval from 300 to 400 km followed by a grouping of ocean reconnaissance satellites in the 400 to 435 interval. Drawing the next interval at 500 km separates some communication and minor military satellites from a number of early warning satellites in the 500 to 600 interval. Creating a lower limit of 630 km captures a grouping of ELINT satellites. 700 to 800 contains military communication satellites, while the next interval from 800 to 900 captures another grouping of ELINTs. The weather satellites fall into the interval from 900 to 950, followed by the navigation satellites from 950 to 1,000 km. The interval from 1,110 to 1,300 contains three more weather satellites, while the range from 1,300 to 1,450 is dominated totally by military communication satellites. Drawing an interval from 1,450 to 1,550 separates some communication satellites from the geodetic satellites existing in this interval. A large gap exists between 1,500 and 19,000 which contains a single science mission is located at 1760 km. The interval from 19,000 to 19,200 contains a group of navigation satellites along with a couple of geodetic satellites. This interval is them followed by a significant empty gap from 19,200 to 35,700. At this upper limit, the geosynchronous satellites begin and continue to 35,900 km. The perigee class intervals are summarized in Table 51. - Apogee Applying the stated considerations and the above thought process used for the inclination and perigee data yielded the class intervals for apogee Table 51. Class Intervals for Perigee | Class | | Inte | rval | | |--------|--------------------------|------|-------------------|--| | Number | (Upper Limit is \leq) | | | | | 1 | 0 | lo | 110 km | | | 2 | 110 | to | $130~\mathrm{km}$ | | | 3 | 130 | to | 150 km | | | 4 | 150 | to | 200 km | | | 5 | 200 | to | $300~\mathrm{km}$ | | | 6 | 300 | to | $400~\mathrm{km}$ | | | 7 | 400 | to | 435 km | | | 8 | 435 | to | $500~\mathrm{km}$ | | | 9 | 500 | to | $600~\mathrm{km}$ | | | 10 | 600 | to | $630~\mathrm{km}$ | | | 11 | 630 | to | 700 km | | | 12 | 700 | to | 800 km | | | 13 | 800 | to | 900 km | | | 14 | 900 | to | 950 km | | | 15 | 950 | to | 1,000 km | | | 16 | 1,000 | to | 1,300 km | | | 17 | 1,300 | to | 1,450 km | | | 18 | 1,450 | tò | 1,550 km | | | 19 | 1,550 | to | 1,700 km | | | 20 | 1,700 | to | 1,800 km | | | 21 | 1,800 | to | 19,000 km | | | 22 | 19,000 | to | 19,200 km | | | 23 | 19,200 | to | 35,700 km | | | 24 | 35,700 | to | 35,900 km | | | 25 | 35,900 | to | above | | listed in Table 52. Argument of Perigee - This parameter is used to distinguish between the molniya communication and early warning satellites only. The intervals were created based upon the range provided by the experts interviewed. Table 53 shows these intervals. # 6.5 Probability Distribution Calculations A probability distribution must be calculated for each arc in the influence diagram model. The predecessor node represents the given variable and the successor
node represents the conditional variable. The spreadsheet, *Lotus 1-2-3*, was used for maintaining the database of the historic satellite data and for calculating the required probability distributions. Macros were programmed in the Lotus environment to automatically calculate these distributions. Appendix A contains the model's initial probability distributions. ### 6.6 Summary To overcome the discrete variable requirement of the software programs used, the chapter demonstrated the method of discretizing to approximate continuous variables as discrete ones. The chapter also provided illustrative examples to demonstrate how influence diagrams manipulate the underlying data structure of the graphical model to extract information represented in a form required by the decision maker. Now that the model variables have been defined, along with their interrelationships, and the probability distributions have been calculated, the model is ready to be applied towards mission prediction. Table 52. Class Intervals for Apogee | Class | | Inte | rval | | |--------|--------------------------|------|------------|--| | Number | (Upper Limit is \leq) | | | | | 1 | 0 | to | 160 km | | | 2 | 160 | to | 200 km | | | 3 | 200 | to | 250 km | | | 4 | 250 | to | 275 km | | | 5 | 275 | to | 300 km | | | 6 | 300 | to | 350 km | | | 7 | 350 | to | 400 km | | | 8 | 400 | to | 500 km | | | 9 | 500 | to | 600 km | | | 10 | 600 | to | 700 km | | | 11 | 700 | to | 720 km | | | 12 | 720 | to | 780 km | | | 13 | 780 | to | 830 km | | | 14 | 830 | to | 900 km | | | 15 | 900 | to | 975 km | | | 16 | 975 | to | 1,150 km | | | 17 | 1,150 | to | 1,300 km | | | 18 | 1,300 | to | 1,390 km | | | 19 | 1,390 | to | 1,500 km | | | 20 | 1,500 | to | 1,600 km | | | 21 | 1,600 | to | 2,250 km | | | 22 | 2,250 | to | 2,350 km | | | 23 | 2,350 | to | 2,600 km | | | 24 | 2,600 | to | 17,000 km | | | 25 | 17,000 | to | 18,000 km | | | 26 | 18,000 | to | 19,000 km | | | 27 | 19,000 | to | 21,000 km | | | 28 | 21,000 | to | 35,700 km | | | 29 | 35,700 | to | 36,000 km | | | 30 | 36,000 | to | 38,000 km | | | 31 | 38,000 | to | 39,000 km | | | 32 | 39,000 | to | 40,000 km | | | 33 | 40,000 | to | 46,700 km | | | 34 | 46,700 | io | 46,800 km | | | 35 | 46,800 | to | 200,000 km | | | 36 | 200,000 | to | 203,000 km | | | 37 | 203,000 | to | above | | Table 53. Class Intervals for Argument of Perigee | Class
Number | Interval (Upper Limit is \leq) | | Mission | | |-----------------|-----------------------------------|--|-------------|------------| | 1 | 0 to 275 degrees | | | Other | | 2 | 275 to 295 degrees | | Molniya | | | 3 | 295 to 310 degrees | | 310 degrees | Other | | 4 | 310 to 325 degrees | | 325 degrees | Early Warn | | 5 | 325 to 360 degrees | | | Other | ## VII. Validation and Results #### 7.1 Introduction This chapter will discuss how the influence diagram model is solved to extract a Soviet satellite mission prediction given the outcome of the model variables. Limitations with the software program used to solve the model will also be discussed along with model alternatives to resolve these problems. Model validation and test results are also presented. ## 7.2 Solving the Model The influence diagram model is composed of chance nodes and conditional arcs. Solving the model simply requires the reversal of the conditional arcs using *Bayes'* Theorem. The steps involved are as follows: - 1. Enter the prior probability distribution into the chance node MISSION. - 2. When a model variable becomes known, reverse any arcs into that specific chance node, making it unconditional. - 3. To reveal the outcome of the known variable, edit the posterior distribution now present in the chance node after the completion of the arc reversals above. Assign a probability value of 1.0 to the known outcome and a 0.0 to remaining possible outcomes. - 4. Reverse the arcs back into the chance node so that it has no successors. The chance node becomes barren and is now removed from the diagram. - 5. The MISSION node now possesses the new probability outcomes for mission based upon the known information. As other model variables become known, repeat steps 2 to 4 for each variable and the mission probabilities will be adjusted accordingly. - 7.2.1 Prior Probability Formulation. As mentioned before, formulation of the prior mission probabilities can be based upon a number of factors but the decision maker determines the final distribution to be applied. Some factors to be considered include: - Nominal number and type of operational platforms historically maintained (ie. Nearly 50% of operational satellites are communication platforms.) - Replacement of aged space platforms. - Adding satellites to incomplete constellations. - Resupply missions to Mir. - Number of photo reconnaissance satellites currently operational. - Regional conflicts and the current Soviet photo coverage. - Soviet launch announcements. - Intelligence information. - Expert opinion on Soviet needs. A probability of zero should not be assigned to any mission in the prior distribution. If such an assignment was made, any possibility for predicting that mission is eliminated. It is recommended that a very small probability value be assigned to unlikely missions related to a particular launch. 7.2.2 Arc Reversal from Known Chance Node. When a Soviet launch occurs, the first piece of information available is usually launch site. Therefore, the arcs into the chance node LAUNCH SITE must be reversed. Recall that when an arc is reversed between two chance nodes, each node inherits the other's predecessors. If the arcs from INCLINATION and BOOSTER into LAUNCH SITE are reversed, a number of additional probabilistic arcs are created, as shown in Figure 20. AFIDS was unable to reverse the arc between LAUNCH SITE and BOOSTER. Approximately 30 minutes after initiating the arc reversal, the program generated an error message which stated: Runtime Error 200 at 0799:321A. The software program InDia was able to reverse all the arcs into LAUNCH SITE, however Table 54 shows the processing time required to complete the arc reversals. Figure 20. After Arc Reversals From Launch Site The time required to reveal the outcome of LAUNCH SITE and reverse the arcs back into the node is summarized in Table 55. After completing the above steps, the chance node MISSION possessed the latest probability distribution for the possible mission outcomes based upon the prior probabilities and the launch site information. The LAUNCH SITE chance Table 54. Processing Time for Launch Site Arc Reversals | Arc | Processing Time | |----------------------------|-----------------| | Reversed | (min) | | BOOSTER to LAUNCH SITE | 5:45 | | INCLINATION to LAUNCH SITE | 6:05 | | APOGEE to LAUNCH SITE | 0:30 | | MISSION to LAUNCH SITE | 0:05 | Table 55. Processing Time to Reveal Outcome of Launch Site | Arc
Reversed | Processing Time (min) | |----------------------------|-----------------------| | LAUNCH SITE to MISSION | 0:05 | | LAUNCH SITE to APOGEE | 0:25 | | LAUNCH SITE to INCLINATION | 6:05 | | LAUNCH SITE to BOOSTER | 3:50 | node is then removed and steps 2 to 4 are ready to be applied to the chance node BOOSTER. However, in attempting to reverse the arc from INCLINATION to BOOSTER, 23 minutes of processing time was required. Moreover, when attempting to reveal the outcome of BOOSTER, the computer produced the following error statement: No more file handles available for allocation. The size of the model increased from its initial size of approximately 20 kilobytes to 600 kilobytes. 7.2.2.1 Independent Model. Since the software programs were unable to process the large number of possible c omes generated by the arc reversals, the next available alternative was to examine the influence of each predictive variable on the mission outcome independently. This essentially assumes that the predictive variables are dependent only upon MISSION. This new model is shown in Figure 21. In examining the feasibility of this assumption, a comparison of the two models was conducted. It was assumed that a Soviet launch occurred and the actual launch site was Plesetsk. In the original model, after reversing all arcs that were into LAUNCH SITE (as shown in Figure 20), the BOOSTER node contained the possible boosters that have historically been launched from Plesetsk and the INCLINATION node possessed the possible inclinations from Plesetsk launches. Table 56 summarizes this information. AND THE PROPERTY OF PROPER Table 56. Possible Inclinations and Boosters Given Site is Plesetsk | INCLINATION | BOOSTER | |-------------|---------| | 62 - 64 deg | SL-4 | | 65 - 70 deg | SL-6 | | 72 - 75 deg | SL-8 | | 81 - 84 deg | SL-14 | TENTAL PROPERTY OF THE PROPERT Figure 21. Independent Influence Diagram Model The chance node **APOGEE** contained the possible apogee ranges given the possible *boosters* from Plesetsk. These values are listed in Table 57. Table 57. Possible Apogee Ranges Given Possible Boosters | Possible Apogee Classes | |-------------------------| | 200 - 720 km | | 780 - 1,300 km | | 1,390 - 1,600 km | | 2,250 - 2,600 km | | 19,000 - 21,000 km | | 38,000 - 46,700 km | | 200,000 - 203,000 km | Finally, the chance node MISSION possessed the possible missions given the possible *inclinations* and the possible *apogees*. However, in using the independent model, a simple arc reversal from LAUNCH SITE to MISSION, provided the possible missions given the actual *launch site*. Table 58 compares the two models' predicted missions outcomes from a Plesetsk launch. The independent model predicted all possible missions that have been launched from Plesetsk. The original model forecasted Manned and Ocean Recon as possible missions. The independent model shows that these missions are not possible candidates for Plesetsk launches. This conflict indicates that LAUNCH SITE is not independent of MISSION (A similar test also should a dependence between MISSION and BOOSTER).
Therefore, the original model should include an arc from MISSION to LAUNCH SITE. If this arc was included, the possible mission list for the original model would not contain manned or ocean reconnaissance missions. Therefore, the original model would list nine possible missions and the independent model would list eleven. The independent model is not as effective in predicting the possible missions since the influences of the booster, inclination, and apogee based upon launch site information are not included. However, the independent model Table 58. Possible Apogee Ranges Given Possible Boosters | Original | Independent | | |-------------|--------------|--------------| | Model | Model | Differences | | COMM-CIV | COMM-CIV | GEODETIC | | COMM-MIL | COMM-MIL | MANNED | | EARLY WARN | EARLY WARN | OCEANOGRAPHY | | ELINT | ELINT | OCEAN RECON | | MANNED | GEODETIC | | | METEOR | METEOR | | | MINOR MIL | MINOR MIL | | | NAV | NAV | | | OCEAN RECON | OCEANOGRAPHY | | | РНОТО | РНОТО | | | SCIENCE | SCIENCE | | only requires five seconds of processing time. Additionally, when a Soviet launch occurs, the launch site information is shortly followed by the booster and inclination data. After incorporating the known booster into the model, the compared models would be very similar. Figure 22 shows these two influence diagrams. The only difference in the two models is the arc between INCLINATION and APOGEE. Therefore, when the inclination is revealed in the original model, the possible mission outcomes would include the influence of APOGEE based upon the revealed inclination. The prediction, based upon this information, is slightly better than that of the independent model, however, since three predictive variables (LAUNCH SITE, BOOSTER, INCLINATION) have been revealed at this point, the improvement is slight. Once the apogee information is available, the model predictions become identical. Therefore, in concluding the model comparison, the corrected original model has a slight advantage in mission prediction, while the independent model is significantly faster in making a prediction. Figure 22. Models After Revealing Booster Outcome ## 7.3 Model Validation and Results To validate the model, launch data to be published in Soviet Year in Space, 1990 was obtained from Mr. Nicholas Johnson (Appendix C). Additionally, the two line element sets contain the argument of perigee values needed to supplement this data. Since the missions associated with this test data are known, it is possible to assess the predictive capability of the model. The prior distribution used assumed an equal probability for each mission. This allows for model validation in a worst case scenario where no prior information is utilized. The predictive variables were entered into the model in the following order (simulates the sequence of information arrival) until a 100% prediction probability was reached or all model information was exhausted: - 1. Launch Site - 2. Booster - 3. Perigee - 4. Apogee - 5. Argument of Perigee (Molniya Orbits Only) - 6. Number of Payloads - 7. Geosynchronous Position (Geosynchronous Orbits Only) Applying the required steps in solving the model, yields the results summarized in Table 59. Specific model validation assessments are now provided: - In 28 of the 35 cases tested, the independent model was able to correctly identify the specific mission associated with the launch. Of the 7 cases in which a 100% probability prediction was not reached, the model correctly assigned the higher probability to five of these missions. Therefore, only two launches were incorrectly assessed. However, if prior information was incorporated into the prior probability distribution before the initiation of the mission assessment, the correct missions could have been identified. For example, if a 90% prior probability was assigned to both the *ELINT* mission for Launch 5 and the *photo* mission for Launch 29, the model would have predicted the correct missions, for the respective launches, to 97%. - The effect of the prior probability distribution assignment is only important when evaluating the predicted mission probabilities after each model variable is revealed and when the model is unable to identify the unique mission associated with the launch. In cases where the mission can be 100% identified and each mission possessed an initial probability greater than one, the actual value of the prior assignment has no effect on the final outcome. - Some missions were quickly identified. For example, the ocean reconnaissance mission of launch number 12 was identified after the launch booster was revealed. Four missions were identified after inclination was revealed. The majority of the missions (10) required at least perigee information. The launches associated with geosynchronous satellites always require the equatorial position information before being distinguished among the remote sensing and civilian Table 59. Validation Results | Launch
Number | Last Prediction
Variable
Applied | Actual
Mission | Predicted Mission(s)
(probability) | |------------------|--|-------------------|--| | 1 | Apogee | РНОТО | PHOTO (1.0000) | | 2 | Perigee | COMM-MIL | COMM-MIL (1.0000) | | 3 | Arg of Perigee | COMM-CIV | COMM-CIV (1.0000) | | 4 | Apogee | РНОТО | PHOTO (1.0000) | | 5 | No of Payloads | ELINT | ELINT (0.1768)
OCEANOGRAPHY (0.8232) | | 6 | Inclination | MINOR MIL | MINOR MIL (1.0000) | | 7 | Perigee | MANNED | MANNED (1.0000) | | 8 | Geosync Position | COMM-MIL | COMM-MIL (1.0000) | | 9 | Perigee | NAV | NAV (1.0000) | | 10 | No of Payloads | OCEANOGRAPHY | OCEANOGRAPHY (0.8232)
ELINT (0.1768) | | 11 | Perigee | MANNED | MANNED (1.0000) | | 12 | Booster | OCEAN RECON | OCEAN RECON (1.0000) | | 13 | Perigee | NAV | NAV (1.0000) | | 14 | Apogee | PHOTO | PHOTO (1.0000) | | 15 | Arg of Perigee | EARLY WARN | EARLY WARN (1.0000) | | 16 | Perigee | COMM-MIL | COMM-MIL (1.0000) | | 17 | No of Payloads | SCIENCE | SCIENCE (0.8949)
PHOTO (0.1051) | | 18 | Apogee | РНОТО | PHOTO (1.0000) | | 19 | Apogee | PHOTO | PHOTO (1.0000) | | 20 | Perigee | NAV | NAV (1.0000) | | 21 | Perigee | MINOR MIL | MINOR MIL (1.0000) | | 22 | Arg of Perigee | COMM-CIV | COMM-CIV (1.0000) | | 23 | Arg of Perigee | EARLY WARN | EARLY WARN (1.0000) | | 24 | Perigee | MANNED | MANNED (1.0000) | | 25 | Perigee | РНОТО | PHOTO (1.0000) | | 26 | Inclination | PHOTO | PHOTO (1.0000) | | 27 | No of Payloads | NAV | NAV (0.9821)
GEODETIC (0.0179) | | 28 | Inclination | ELINT | ELINT (1.0000) | | 29 | No of Payloads | PHOTO | PHOTO (0.2033)
SCIENCE (0.7967) | | 30 | Inclination | MANNED | MANNED (1.0000) | | 31 | Apogee | COMM-CIV | COMM-CIV (1.0000) | | 32 | Apogee | Pi+OTO | PHOTO (1.0000) | | 33 | Geosync Position | COMM-CIV | COMM-CIV (1.0000) | | 34 | Perigee | EARLY WARN | EARLY WARN (0.9770)
COMM-CIV (0.0230) | | 35 | No of Payloads | METEOR | METEOR (0.9994)
SCIENCE (0.0006) | and military communication missions. Molniya orbits generally require argument of perigee information, however for launch number 31, the civilian communication satellite was distinguished from an early warning mission with apogee information since it exceeded its usual apogee class interval by a very small amount placing the known apogee value in an interval without early warning observations. • In distinguishing between oceanography and electronic intelligence missions, the model incorrectly assigned the higher probability for launch number 5, while correctly assigning a higher probability to oceanography for launch number 10. However, the Soviets currently announce when oceanographic satellites are launched. This information alone could be incorporated into the prior probability distribution, causing a low probability assignment to the oceanographic mission. Also, downlinked telemetry frain the oceanographic satellites can actually be retrieved by U.S. ground stations (17). Are diditional means of distinguishing between the two missions would require information on the orbit's right ascension of the ascending node. This right measurement is time dependent and would require a significantly larger historical database than was used in this research. • Launches 17 and 29 illustrate the problem of distinguishing between photo reconnaissance and science missions that occupy similar orbits. One discriminating factor between the two missions is that photo reconnaissance satellites undergo a number of orbital maneuvers where science missions generally do not possess maneuver capability (10). Additionally, the time of day that the launch occurred could be utilized since the Soviets, for some photo reconnaissance missions, require certain lighting conditions for recovery operations (10). An analysis of the satellite's ground trace and position versus time of day would also provide useful information. Therefore, information on the right ascension of the ascending node will help to alleviate this problem. - For launches number 27 and 35, high probabilities were assigned to the correct missions. Both cases illustrate situations in which an orbit is dominated by a particular mission type, however, one or two observations of another mission type occur in very similar orbits. - Launch 34, an early warning satellite, demonstrates how the model is used for a launch failure. After the perigee value was revealed in the model, the early warning probability was 0.9770 and the Molniya civilian communication probability was 0.0230. Since the satellite failed to reach the proper apogee height, when the apogee value was revealed, the model did not find a launch and orbit combination that matched any historical Soviet launches. In this situation, the model returns a distribution that each mission is equally likely to occur. When the decision maker reaches this point, the best alternative available is to return to the
distribution produced by the previous model parameter. ## 7.4 Summary This chapter demonstrated how the influence diagram model is applied towards predicting the mission associated with a Soviet launch. Due to software limitations, an assumption of variable independence had to be made. The model was validated using 1990 launch data and the results were presented and analyzed. The final chapter will summarize the overall research effort of this thesis. ### VIII. Conclusions and Recommendations ### 8.1 Introduction The purpose of this thesis research was to demonstrate the applicability of using influence diagramming towards the development of a Soviet satellite mission prediction model. The model captured the influence of launch information and certain orbital parameters to reduce the uncertainty of the satellite's mission. Using 1990 Soviet launch information, the model's predictive power was successfully demonstrated. Additionally, since the model is capable of assessing mission outcome probabilities with each introduction of additional information, the model is capable of being applied to the development of an ASAT decision model. ### 8.2 Conclusions Influence diagrams are an effective tool for constructing a satellite prediction model. The use of sucessively revealed information effectively refined the estimate of the probable mission and helped reduce the uncertainty in the model. The model was able to accurately predict the mission in 28 of 35 test cases. Furthermore, if the adjusted prior probability is used, versus the worst case scenario of applying a equiprobable prior, the accurracy is increased to 100%. Software limitations of AFIDS and InDia prevented the generation of results from the initial influence diagram model. Arc reversals in this model, created a significantly large number of outcomes to a magnitude which exceeded the data storage and computational capabilities of the software programs. An assumption of independence among the predictive model variables was applied to create an alternative influence diagram model. Additionally, the reveal function of AFIDS does not function properly. The predictive model is flexible. Influence diagrams provided an effective means for incorporating expert knowledge and decision theory in a number of different ways. Discretizing allowed the use of both discrete and continuous variables in a single model. This process proved to be an effective technique of adapting the continuous variables to the restrictions of the influence diagramming rule of using only one type of variable in a single model and the software requirement of using only discrete variables. The predictive influence diagram model can be adapted towards the development of an ASAT engagement decision model. The use of decision and value nodes introduced in Chapter VI, along with the predictive capabilities of the tested model, provide a foundation in which a decision maker can collectively organize decision rules and utility values to evaluate possible engagement outcomes. ### 8.3 Recommendations To improve upon the tested influence diagram model, the following recommendations are made: 1. Research new and more efficient methods for determining probabilities. For example, development of a software program which is capable of estimating the probability density functions of the model's continuous variables to allow the control of Type I and Type II errors. Additionally, investigation of possible heuristics or algorithms in the field of artificial intelligence could overcome the software problems encountered in this research. POLICE DE LA CONTRA DEL CONTRA DE LA DEL CONTRA DE LA CONTRA DE LA CONTRA DE LA CONTRA DEL CONTRA DE LA DEL CONTRA DE LA CONTRA DEL CONTRA DE LA DEL 2. Explore the possible addition of time related model variables, such as launch time and right ascension of the ascending node to improve the predictive capability of the model. This would require expansion of the historical database and/or additional expert information. - 3. Using the predictive model, fully develop an ASAT decision model. - 4. Research the development of a hybrid influence diagram model which allows the use of both discrete and continuous variables in a single diagram. - 5. Develop an expert system based upon the use of influence diagrams and the probability approach applied in this thesis. Testing and validation yielded a number of cases where the mission probability goes to 1.0. This reduction of uncertainty as information becomes available forms a foundation for the development of an expert system. ## 8.4 Summary This thesis demonstrated that influence diagram models can be used to capture expert knowledge and construct a graphical model which illustrates the probabilistic relationships of the model variables and also provide a mathematically concise structure for computationally manipulating the underlying data structure to extract information in a usable form. THE SECTION OF THE PROPERTY # Appendix A. Model Probability Distributions # A.1 Inclination Given Mission | | Mission: | | | | | | | | | |---|---|--|--|--|--|--|--|--|--------| | Inclination | Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | 3 | 0.4706 | 0.0756 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 50 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 51 | 0.0000 | 0.0000 | 0.6000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 53 | 0.0196 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 0.0000 | | 62 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 64 | 0.5098 | 0.0084 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 65 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.8000 | 0.0000 | 0.0000 | 0.0000 | | 66 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 70 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 72 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 73 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 75 | 0.0000 | 0.5630 | 0.0000 | 0.0000 | 0.6250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 81 | 0.0000 | 0.0600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 84 | 0.0000 | 0.3529 | 0.0000 | 0.7500 | 0.1250 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | | 96 | 0.9990 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 100 | 0.0000 | 0.0000 | 0.9000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | 0.0000 | Mission: | | 0.0 | • | D1 - 4 | | | | | | Inclination | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | 3 | Min-Mil
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | | 3
50 | Min-Mil
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | 0.2000
0.0000 | 0.0000 | 0.0000
0.0000 | | | 3
50
51 | Min-Mil
0.0000
0.0000
0.1429 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.000.0
0.000.0
0.000.0 | 0.0000
0.0000
0.0063 | 0.2000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | | | 3
50
51
53 | Min-Mil
0.0000
0.0000
0.1429
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.000.0
0.000.0
0.000.0 | 0.0000
0.0000
0.0063
0.0000 | 0.2000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588 | 0.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62 | Min-Mil
0.0000
0.0000
0.1429
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000 | 0.2000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000 | 0.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62
64 | Min-Mil
0.0000
0.0000
0.1429
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
9.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818 | 0.2000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000
0.3529 | 0.0000
0.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62
64
65 | Min-Mil
0.0000
0.0000
0.1429
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013 | 0.2000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000
0.3529
0.0588 |
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62
64
65
68 | Min-Mil
0.0000
0.0000
0.1429
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000 | 0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
1.0000 | | | 3
50
51
53
62
64
65
68
70 | Min-Mil
0.0000
0.0000
0.1429
0.0000
0.0000
0.0000
0.5714
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950 | 0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000 | | | 3
50
51
53
62
64
65
68
70 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943 | 0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000 | | | 3
50
51
53
62
64
65
68
70
72
73 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943
0.2138 | 0.2000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2600
9,0000 | 0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62
64
65
68
70
72
73 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943
0.2138 | 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
1.0000
0.0000
0.0000
0.0000
0.0000 | | | 3
50
51
53
62
64
65
68
70
72
73
75 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 0.0000 0.0000 0.2857 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943
0.2138
0.0000
0.0000 | 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | | 3
50
51
53
62
64
65
66
70
72
73
75
81 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 0.0000 0.2857 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000
0.0000
0.0000
0.0455
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943
0.2138
0.0000
0.0200 | 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2600 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | | 3
50
51
53
62
64
65
68
70
72
73
75 | Min-Mil 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.5714 0.0000 0.0000 0.0000 0.2857 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.5283
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.3636
0.5909
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0063
0.0000
0.0000
0.0818
0.2013
2.0000
0.1950
0.0943
0.2138
0.0000
0.0000 | 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0588
0.0000
0.3529
0.0588
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | # A.2 Apogee Given Mission | | Mission: | | | | | | | | | |--------|----------|--------|--------|--------|--------|---------|--------|--------|--------| | Apogee | Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | 160 | 0.0000 | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 1.0000 | 0.0000 | | 250 | 0.0196 | 0.0100 | 0.0000 | 0.0000 | 0,0000 | 0.2000 | 0.0000 | 0,0000 | 0.0000 | | 275 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4000 | 0.9270 | 0.0000 | 0.0000 | | 300 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.2432 | 0.0000 | 0.0000 | | 400 | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7297 | 0.0000 | 0.0000 | | 500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |--------|--------|--------|--------|--------|--------|--------|----------|--------|--------| | 600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 700 | 0.0000 | 0.0000 | 0.0000 | 0.7500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 720 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | • 0.0000 | 0.0000 | 0.0000 | | 780 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 830 | 0.0000 | 0.0924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 900 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 975 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7000 | | 1150 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000 | | 1390 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1500 | 0.0000 | 0.7647 | 0.0000 | 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1600 | 0.0000 | 0.0588 | 0.0000 | ა.0000 | 0.7500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2600 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 17000 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 18000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 19000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 21000 | 0.0000 | 0.0000 | 0.0435 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 35700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 36000 | 0.4706 | 0.0756 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 38000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 39000 | 0.0000 | 0.0000 | 0.0435 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 40000 | 0.4902 | 0.0084 | 0.9130 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 46700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 46800 | 0.0196 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 200000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 203000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | |
Missions: | | | | | | | | |--------|-----------|--------|---------|---------|--------|---------|--------|---------| | Apogee | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | 440 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 160 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 200 | 0.0000 | 0.0566 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0126 | 0.0000 | 0.0000 | 0.0000 | | 275 | 0.0000 | 0.0000 | 0.3182 | 0.0000 | 0.2201 | 0.2000 | 0.3529 | 0.0000 | | 300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2138 | 0.0000 | 0.0000 | 0.0000 | | 350 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1887 | 0.0000 | 0.0000 | 0.0000 | | 400 | 0.0000 | 0.0000 | 0.0455 | 0.0000 | 0.1698 | 0.0000 | 0.3529 | 0.0000 | | 500 | 0.1429 | 0.0000 | 0.5455 | 0 0000 | 0.1950 | 0.0000 | 0.0000 | 0.0000 | | 600 | 0.7143 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 700 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.4000 | 0.0000 | 0.0000 | | 720 | 0.0714 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0,0000 | 0.9000 | 0.0000 | | 780 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 830 | 0.0000 | 0.0000 | 0.0909 | 0.0000 | 0.0000 | 0.0000 | 0.6900 | 0.0000 | | 900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 975 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0588 | 0.0000 | | 1150 | 0.0000 | 0.4717 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0009 | | 1300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1390 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | | 2250 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2350 | 0.0714 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 2600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1176 | 1.0000 | | 17000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 18000 | 0.0000 | 0.0566 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |--------|--------|--------|--------|--------|--------|--------|--------|--------| | 19000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 21000 | 0.0000 | 0.4151 | 0.0000 | 0.0000 | 0.0000 | 0.6000 | 0.0000 | 0.0000 | | 35700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 36000 | 0.6000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | 38000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 39000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 40000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 46700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 46800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 200000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 203600 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1176 | 0.0000 | # A.3 Perigee Given Mission | | Mission: | | | | | | | | | |---------|----------|--------|--------|--------|--------|---------|--------|--------|--------| | Perigee | Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | 110 | 0.0000 | 6.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 130 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 150 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 200 | 0.0196 | 0.0000 | 0.0000 | 0.0357 | 6.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | | 300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0541 | 0.0000 | 0.0000 | | 400 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9459 | 0.0000 | 0.0000 | | 435 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 500 | 0.1765 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 600 | 0.0784 | 0.0000 | 0,3913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 630 | 0.1569 | 0.0084 | 0.5217 | 0.0714 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 700 | 0.0980 | 0.0000 | 0.0870 | 0.6786 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 800 | 0.0000 | 0.0924 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 900 | 0.0000 | 0.0000 | 0.0000 | 0.2143 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 950 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.7000 | | 1000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.3000 | | 1450 | 0.0000 | 0.6050 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1550 | 0.0000 | 0.2185 | 0.0000 | 0.0000 | 0.7500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1800 | 0.0000 | C.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 19000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 19200 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 35700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 35900 | 0.4706 | 0.0756 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | Mission: | | | | | | | | |----------|---|---|---|--|---|---|--| | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0200 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0455 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0714 | 0.1132 | 0.0000 | 0.000 | 0 2767 | 0.0000 | 0 0000 | 1 0000 | | 6.0714 | 0.0000 | 0.3182 | 0.0000 | 0.4906 | 0.2000 | 0.7059 | 0.0000 |
| 0.2857 | 0.0000 | 0.0000 | 0.0000 | 0.2327 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.5455 | 0.0000 | 0.0000 | 0.0000 | 0.0588 | 0.0000 | | 0.4286 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1176 | 0.0000 | | 0.1429 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | | Min-Mil 0.0000 0.0000 0.0000 0.0714 0.0714 0.2857 0.0000 0.4286 0.1429 | Min-Mil Nav 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 0.1132 0.0714 0.0000 0.2857 0.0000 0.0000 0.0000 0.4286 0.0000 0.1429 0.0000 | Min-Mil Nav O-Recon 0.0000 0.0000 0.0000 0.0000 0.0000 0.0455 0.0000 0.0000 0.0000 0.0714 0.1132 0.0000 0.0714 0.0000 0.3182 0.2857 0.0000 0.0000 0.0000 0.5455 0.4286 0.0000 0.0000 0.1429 0.0000 0.0000 | Min-Mil Nav O-Recon Oceanog 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 0.1132 0.0000 0.0000 0.0714 0.0000 0.3182 0.0000 0.2857 0.0000 0.0000 0.0000 0.0000 0.5455 0.0000 0.4286 0.0000 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 | Min-Mil Nav O-Recon Oceanog Photo 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0455 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 0.1132 0.0000 0.0000 0.4906 0.2857 0.0000 0.0000 0.0000 0.2327 0.0000 0.0000 0.5455 0.0000 0.0000 0.4286 0.0000 0.0000 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.0000 | Min-Mil Nav O-Recon Oceanog Photo Rem-Sen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.01132 0.0000 0.0000 0.4906 0.2000 0.0714 0.0000 0.3182 0.0000 0.4906 0.2000 0.2857 0.0000 0.0000 0.0000 0.2327 0.0000 0.0000 0.0000 0.5455 0.0000 0.0000 0.0000 0.4286 0.0000 0.0000 0.0000 0.0000 0.2000 0.1429 0.0000 0.0000 0.0000 0.0000 0.0000 0.2000 | Min-Mil Nav O-Recon Oceanog Photo Rem-Sen Scien 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.2767 0.0000 0.0000 0.0714 0.0000 0.3182 0.0000 0.4906 0.2000 0.7059 0.2857 0.0000 0.0000 0.0000 0.2327 0.0000 0.0058 0.4286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 700 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |-------|--------|--------|--------|--------|--------|--------|--------|--------| | 800 | 0.0000 | 0.0000 | 0.0909 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | 950 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0588 | 0.0000 | | 1000 | 0.0000 | 0.4717 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1300 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1450 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1550 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 1800 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0588 | 0.0000 | | 19000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 19200 | 0.0000 | 0.4151 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 35700 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 35900 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | | | | | | | | | | # A.4 Argument of Perigee Given Mission | Arg of
Perigee | Mission:
Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | |-------------------|--------------------|--------|---------|---------|--------|---------|--------|---------|--------| | 270 | 0.0000 | 0.2000 | 0.0000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | 290 | 1.0000 | 0.2000 | 0.0000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | 305 | 0.0000 | 0.2000 | 0.0000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | 325 | 0.0000 | 0.2000 | 1.0000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | 360 | 0.0000 | 0.2000 | 0.0000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | Arg of | Mission: | | | | | | | | | | Perigee | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | 270 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | | 290 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | | 305 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | | 325 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | | 360 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | | # A.5 No of Payloads Given Mission | Number of | Mission: | | | | | | | | | |-----------|----------|--------|---------|---------|--------|---------|--------|---------|--------| | Payloads | Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | 1 | 1.0000 | 0.1701 | | | | | | | | | | 1.0000 | 0.1765 | 1.0000 | 1.0000 | 0.7500 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2500 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 6 | 0 0000 | 0.3529 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 8 | 0.0000 | 0.4706 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Number of | Mission: | | | | | | | | | | Payloads | Min-Mii | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | 1 | 1.0000 | 0.4717 | 1.0000 | 1.0000 | 0.9874 | 1.0000 | 0.6471 | 1.0000 | | | 2 | 0.0000 | 0.0000 | υ.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1176 | 0.0000 | | | 3 | 0 0000 | 0.5283 | 0.0000 | 0.0000 | 0.0126 | 0.0000 | 0.2353 | 0.0000 | | | 6 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 8 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | # A.6 Geosynchronous Position Given Apogee | M | ission: | | | | | | | | | |---|---|--|--|--|--|--|--|--|--------| | Geo Position | Comm-C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | | | | | | | | | | | | 35.0 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 40.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 45.0 | 0.0000 | 0.2222 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 49.0 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 53.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 70.0 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 80.0 | 0.1176 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 85.0 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 90.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 95.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 96.5 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 99.0 | 0.1765 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 103.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 128.0 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 140.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 190.0 | 0.0588 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 335.0 | 0.0588 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 336.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 346.0 | 0.1176 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 349.0 | 0.0588 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | N/A | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | M | ission; | | | | | | | | | | M
Geo Position | ission:
Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | | | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | | | Nav
0.0000 | O-Recon | Oceanog
0.0000 | Photo | Rem-Sen
0.0000 | Scien
0.0000 | Unknown | | | Geo Position | Min-Mil | | | Ç | | | | | | | Geo Position 35.0 | Min-Mil
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Geo Position
35.0
40.0 | Min-Mil
0.0000
0.0000 | 0.0000 | 0.0000
9.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | | | 35.0
40.0
45.0 | Min-Mil
0.0000
0.0000
0.0000 |
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0 | Min-Mil
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0
85.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0
85.0
90.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0
85.0
90.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0
85.0
90.0
95.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0
40.0
45.0
49.0
53.0
70.0
80.0
85.0
90.0
95.0
96.5 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
9.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 140.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 140.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 140.0 190.0 335.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 140.0 190.0 335.0 336.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | 35.0 40.0 45.0 49.0 53.0 70.0 80.0 85.0 90.0 95.0 96.5 99.0 103.0 128.0 140.0 190.0 335.0 336.0 346.0 | Min-Mil 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 9.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | # A.7 Booster Given Apogee | | Apogee: | : | | | | | | | | | | | |---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Booster | 160 | 200 | 270 | 300 | 350 | 100 | 500 | 600 | 700 | 720 | 780 | 830 | | SL-3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0769 | 0.0000 | 0.0000 | 0.0000 | | SL-4 | 0.0000 | 0.0000 | 0.6250 | 0.9828 | 0.9500 0 | .9344 | 0.6889 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |---------|---------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------| | SL-6 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 0 | .0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-8 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0 | .0000 | 0.0444 | 0.8000 | 0.0000 | 1.0000 | 0.0000 | 0.8462 | | SL-11 | 0.0000 | 0.0000 | 0.1875 | 0.0172 | 0.0000 | 0.0164 | 0.2667 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1538 | | SL-12 | 0.0000 | 0.8333 | 0.0313 | 0.0000 | 0.0000 | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-13 | 0.0000 | 0.0000 | 0.0313 | 0.0000 | 0.0250 | 0.0492 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-14 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.2000 | 0.9231 | 0.0000 | 0.0000 | 0.0000 | | SL-16 | 0.0000 | 0.1667 | 0.0938 | 0.0000 | 0.0250 | 0.000 | 0.0000 | 0.0000 | 0.0000 | C 0000 | 0.0000 | 0.0000 | | SL-17 | 0.0000 | 0.0000 | 0.0313 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | | | | | Apogee. | | | | | | | | | | | | | Booster | 900 | 975 | 1150 | 1300 | 1390 | 1500 | 1600 | 2250 | 2350 | 2600 | 17000 | 18000 | | SL-3 | 0.0000 | 0.1111 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-6 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-8 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | .5385 | 0.5385 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-11 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-12 | 0.1429 | 0.0000 | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | | SL-13 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-14 | 0.0000 | 0.8889 | 0.0000 | 1.0000 | 0.0000 | 0.4615 | 0.4615 | 0.0000 | 0.0000 | 0.6667 | 0.0000 | 0.0000 | | SL-16 | 0.8571 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.3333 | 0.0000 | 0.0000 | | SL-17 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | | | | | Apogee: | | | | | | | | | | | | | Booster | 19000 | 21000 | 35700 | 3600 | 0 38000 | 39 | 000 | 40000 | 46700 | 46800 | 200000 | 203000 | | SL-3 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-4 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-6 | 0.0000 | 0.0400 | 0.0000 | 0.000 | 0.0000 | 1.0 | 000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.5000 | | SL-8 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-11 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-12 | 0.0000 | 0.9600 | 0.0000 | 1.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | | SL-13 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-14 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-16 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-17 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.000 | 0.0 | 000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | | | # A.8 Launch Site Given Inclination and Booster BOOSTER SL-3 INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.3333 BOOSTER SL-4 INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.3333 0.3333 1.0000 0.3333 0.0000 1.0000 0.3333 0.4194 1.0000 0.0000 0.3333 0.3333 0.0000 0.3333 0.3333 PL 0.3333 0.3333 1.0000 0.3333 1.0000 0.0000 0.3333 0.5806 0.0000 1.0000 0.3333 0.3333 1.0000 0.3333 0.3333 0.3333 1.0000 0.3333 0.3330 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
0.3333 0.333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.33 #### BOOSTER SL-6 #### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0 3333 0.3333 0.3333 0.3333 0.3333 0.6600 1.0000 0.3333 0.333 0.3333 0.3333 0.3333 0.3333 0.333 0.333 0.333 0.3333 0.3333 0.3 KY 0.3333 0.3333 0.3333 0.3333 0.0000 0.0000 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 #### BOOSTER SL-8 ### INCLINATION SITE 3.00 50 00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0 3333 0.3333 0.0000 0.3333 0.3333 0.3333 0.0000 0.3333 0.3333 0.3333 0.3333 0.0000 0.3333 0.0000 0.3333 0.3333 PL 0.3333 0.3 KY 0.3333 0.3333 1.0000 0.3333 0.3333 0.3333 0.0000 0.3333 0.3333 0.3333 0.0000 0.3333 0.0000 0.3333 0.3333 #### BOOSTER SL-11 #### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.333 0.333 0.333 0.333 0.333 0.333 1.000 1.000 0.333 0.333 0.333 1.000 0.333 0.3 BOOSTER SL-12 ### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 1.000 0.3333 1.000 0.3333 0.3333 1.000 0.3333 1.000 0.3333 1.000 0.3333 0.33 BOOSTER SL-13 ### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.333 0.333 1.000 0.333 0.333 0.333 0.333 0.333 1.000 0.333
0.333 0.3 BOOSTER SL-14 ### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3333 0 3000 0 2332 0 0000 0 2332 0 2000 0 2332 0 2000 0 2332 0 2000 0 2332 0 2000 0 2333 0 2333 PL RY 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.0000 0.3333 0.0000 0.3333 0.3333 0.3333 BOOSTER SL-16 #### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.3333 0.3333 0.3333 0.3333 0.3333 1.0000 0.3333 1.0000 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 1.0000 PL 0.3333 0.3 KY 0 3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 ### BOOSTER SL-17 ### INCLINATION SITE 3.00 50.00 53.00 62.00 64.00 65.00 66.00 70.00 72.00 73.00 75.00 81.00 84.00 96.00 100.00 TT 0.3333 0.3333 1.0000 0.3333 # Appendix B. Independent Model Distribution Additions ## B.1 Booster Given Mission | | Mission: | | | | | | | | | |---------|----------|--------|---------|---------|--------|---------|--------|---------|--------| | Booster | Comm.C | Comm-M | E-Warn | Elint | Geodet | LV Test | Man | Mars | Meteor | | SL-3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8649 | 0.0000 | 0 0000 | | SL-6 | 0.5098 | 0.0084 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-8 | 0.0000 | 0.5630 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SK-11 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-12 | 0.4902 | 0.0756 | 0.0000 | 0.0357 | 0.2500 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | | SL-13 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1081 | 0.0000 | 0 0000 | | SL-14 | 0.0000 | 0.3529 | 0.0000 | 0.7500 | 0.7500 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | | SL-16 | 0.0000 | 0.0000 | 0.0000 | 0.2143 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | | SL-17 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0270 | 0.0000 | 0.0000 | | | Mission: | | | | | | | | | | Booster | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | SL-3 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.6000 | 0.0000 | 0.0000 | | | SL-4 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.7059 | 0.0000 | | | SL-6 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0588 | 0.0000 | | | SL-8 | 0.8571 | 0.4717 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | SK-11 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | SL-12 | 0.0000 | 0.5283 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0588 | 0.0000 | | | SL-13 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2000 | 0.0000 | 0.0000 | | | SL-14 | 0.1429 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.1765 | 0.0000 | | | SL-16 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | | | SL-17 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | ## B.2 Launch Site Given Mission | | MISSION: | | | | | | | | | |------|----------|--------|---------|---------|----------|---------|--------|---------|--------| | Site | Comm-C | Comm-M | E-Warn | Elint | Geodet L | V Test | Man | Mars | Meteor | | тт | 0.5490 | 0.0756 | 0.0000 | 0.2500 | 0.2500 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | | PL | 0.4510 | 0.9244 | 1.0000 | 0.7500 | 0.7500 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | | KY | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Mission: | | | | | | | | | | SITE | Min-Mil | Nav | O-Recon | Oceanog | Photo | Rem-Sen | Scien | Unknown | | | TT | 0.0000 | 0.5283 | 1.0000 | 0.0000 | 0.3836 | 1.0000 | 0.1176 | 1.0000 | | | PL | 0.8571 | 0.4717 | 0.0000 | 1.0000 | 0.6164 | 0.0000 | 0.8824 | 0.0000 | | | KV | 0.1420 | 0.0000 | 0,000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Appendix C. Test Data | | Soviet Launch History, 1990 | | | | | | | | | | |----|-----------------------------|-----------|----------|------|---------|--------|---------|---------|--------|-------------| | No | Name | Date | Time | Site | Booster | Apogee | Perigee | Period | Inclin | Mission | | | | | | ŀ | Ė | (km) | (km) | (min) | (deg) | | | 1 | KOSMOS 2055 | 17-Jan-90 | 14:38:24 | PL | SL-4 | 321 | 249 | 90.21 | 62.83 | PHOTO | | 2 | KOSMOS 2056 | 18-Jan-90 | 12:57:36 | PL | SL-8 | 810 | 776 | 100 72 | 74.04 | COMM-MIL | | 3 | MOLNIYA 3-37 | 23-Jan-90 | 02:52:48 | PL | SL-6 | 39749 | 598 | 717.63 | 62.80 | COMM-CIV | | 4 | KOSMOS 2057 | 25-Jan-90 | 17:02:24 | PL | SL-4 | 327 | 188 | 89.65 | 62.84 | РНОТО | | 5 | KOSMOS 2058 | 30-Jan-90 | 11:16:48 | PL | SL-14 | 665
 634 | 97.71 | 82.51 | ELINT | | 6 | KOSMOS 2059 | 06-Feb-90 | 16:33:36 | PL | SL-8 | 2281 | 190 | 110.19 | 65.84 | MINOR MIL | | 7 | SOYUZ TM-9 | 11-Feb-90 | 06:43:12 | TT | SL-4 | 407 | 382 | 92.45 | 51.62 | MANNED | | 8 | RADUGA 26 | 15-Feb-90 | 07:55:12 | TT | SL-12 | 35810 | 35771 | 1436.28 | 1.46 | COMM-MIL | | 9 | NADEZHDA 2 | 27-Feb-90 | 21:07:12 | PL | SL-6 | 1020 | 958 | 104.87 | 82.96 | NAV | | 10 | OKEAN 2 | 28-Feb-90 | 00.57:36 | PL | SL-14 | 666 | 639 | 97.78 | 82.53 | REMOTE SEN | | 11 | PROGRESS M-3 | 28-Feb-90 | 23:16:48 | TT | SL-4 | 402 | 379 | 92.36 | 51.62 | MANNED | | 12 | KOSMOS 2060 | 14-Mar-90 | 15:21:36 | тт | SL-11 | 417 | 404 | 92.78 | 65.03 | OCEAN RECON | | 13 | KOSMOS 2061 | 20-Mar-90 | 00:28:48 | PL | SL-8 | 1017 | 973 | 105.01 | 82.94 | NAV | | 14 | KOSMOS 2062 | 22-Mar-90 | 07:26:24 | PL | SL-4 | 248 | 211 | 89.09 | 32.33 | РНОТО | | 15 | KOSMOS 2063 | 27-Mar-90 | 16:33:36 | PL | SL-6 | 39739 | 608 | 717,64 | 62.81 | EARLY WARN | | 16 | KOSMOS 2064 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1491 | 1463 | 115.48 | 73.98 | COMM-MIL | | 16 | KOSMOS 2065 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1476 | 1462 | 115.29 | 73.98 | COMM-MIL | | 16 | KOSMOS 2066 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1387 | 114.33 | 73.98 | COMM-MIL | | 16 | KOSMOS 2067 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1401 | 114.49 | 73.98 | COMM-MIL | | 16 | KOSMOS 2068 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1415 | 114.65 | 73.98 | COMM-MIL | | 16 | KOSMOS 2069 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1430 | 114.80 | 73.98 | COMM-MIL | | 16 | KOSMOS 2070 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1444 | 144.96 | 73.98 | COMM-MIL | | 16 | KOSMOS 2071 | 06-Apr-90 | 03:21:36 | PL | SL-8 | 1463 | 1460 | 115.13 | 73.98 | COMM-MIL | | 17 | рнотом з | 11-Apr-90 | 17:02:24 | PL | SL-4 | 376 | 217 | 90.45 | 62.80 | SCIENCE | | 18 | KOSMOS 2072 | 13-Apr-90 | 18:57:36 | тт | SL-4 | 288 | 241 | 89.79 | 64.76 | РНОТО | | 19 | KOSMOS 2073 | 17-Apr-90 | 07:55:12 | PL | SL-4 | 298 | 233 | 69.82 | 82.36 | РНОТО | | 20 | KOSMOS 2074 | 20-Apr-90 | 18:43:12 | PL | SL-8 | 1005 | 967 | 104.83 | 82.95 | NAV | | 21 | KOSMOS 2075 | 25-Apr-90 | 12:57:36 | PL | SL-8 | 515 | 484 | 94.60 | 74.02 | MINOR MIL | | 22 | MOLNIYA 1-77 | 26-Apr-90 | 01:40:48 | PL | SL-6 | 39724 | 631 | 717.78 | 62.80 | COMM-CIV | | 23 | KOSMOS 2076 | 28-Apr-90 | 11:02:24 | PL | SL-6 | 38774 | 581 | 717.77 | 63.04 | EARLY WARN | | 24 | PROGRESS 42 | 05-May-90 | 20:38:24 | TT | SL-4 | 389 | 389 | 92.37 | 51.62 | MANNED | | 25 | KOSMOS 2077 | 07-May-90 | 18:28:48 | PL | SL-4 | 375 | 174 | 80.00 | 62.84 | РНОТО | | 26 | KOSMOS 2078 | 15-May-90 | 10:04:48 | TT | SL-4 | 278 | 213 | 89.41 | 69.99 | рното | | 27 | KOSMOS 2079 | 19-May-90 | 08:38:24 | TT | SL-12 | 19185 | 19075 | 675.73 | 64.90 | NAV | | 27 | KOSMOS 2080 | 19-May-90 | 08:38:24 | TT | SL-12 | 19152 | 19108 | 675.73 | 64.89 | NAV | | 27 | KOSMOS 2081 | 19-May-90 | 08:38:24 | TT | SL-12 | 19160 | 19099 | 675.73 | 64.91 | NAV | | 28 | KOSMOS 2082 | 22-May-90 | 05:31:12 | TT | SL-16 | 855 | 849 | 101.97 | 71.00 | ELINT | | 29 | RESURS-F 8 | 29-May-90 | 07:26:24 | PL | SL-4 | 272 | 259 | 89.82 | 82.34 | РНОТО | | 30 | KRISTALL | 31-May-90 | 10:33:36 | TT | SL-13 | 392 | 377 | 92.24 | 51.81 | MANNED | | 31 | MOLNIYA 3-36 | 13-Jun-90 | 00:57:36 | PL | SL-6 | 39888 | 484 | 717.73 | 62.83 | COMM-CIV | | 32 | KOSMOS 2083 | 19-Jun-90 | 08:52:48 | PL | SL-4 | 412 | 298 | 91.65 | 82.59 | PHOTO | | 33 | GORIZONT 20 | 20-Jun-90 | 23:31:12 | TT | SL-12 | 35865 | 35715 | 1436.29 | 1.49 | COMM-CIV | | 34 | KOSMOS 2084 | 21-Jun-90 | 20:38:24 | PL | SL-6 | 758 | 586 | 98.19 | 62.81 | EARLY WARN | | 35 | METEOR 2-19 | 27-Jun-90 | 22:33:36 | PL | SL 14 | 961 | 939 | 104.06 | 62.55 | METEOR | # Bibliography - 1. Ang, Alfredo H-S. and Wilson H. Tang. Probability Concepts in Engineering Planning and Design, Volume I, Basic Principles. Canada: John Wiley & Sons, Inc., 1975. - 2. Banks, Peter M. and Sally K. Ride. "Soviets in Space," Scientific American, Volume 260, Number 2: 32-40 (February 1989). - 3. Baron, Captain Christopher Thomas. Influence Diagrams: Automated Analysis with Dynamic Programming. MS Thesis AFIT/GOR/MA/88D-1. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1988. - 4. Britto, Mark and Robert M. Oliver. "Forecasting Donors and Donations," Journal of Forecasting, 4: 39-55 (December 1986). - 5. Devore, Jay L. Probability and Statistics for Engineering and the Sciences. Monterey, CA: Brooks/Cole Publishing Company, 1987. - 6. Department of Defense. Soviet Military Power 1985: U.S. Government Printing Office, April 1985. - 7. Howard, Ronald A. and James E. Matheson. "Influence Diagrams," *The Principles and Applications of Decision Analysis, Volume II*. Menlo Park, CA: Strategic Decision Group, 1984. - 8. Howard, Ronald A. "Knowledge Maps," Management Science, 35: 903-922 (August 1989). - 9. Johnson, Nicholas L., Advisory Scientist, Teledyne Brown Engineering. Telephone Interview. Colorado Springs, CO, 10 October 1990. - 10. Johnson, Nicholas L., Advisory Scientist, Teledyne Brown Engineering. Telephone Interview. Colorado Springs, CO, 2 November 1990. - 11. Johnson, Nicholas L. The Soviet Year in Space 1988. Colorado Springs, CO: Teledyne Brown Engineering, January 1990. - 12. Johnson, Nicholas L. The Soviet Year in Space 1988. Colorado Springs, CO: Teledyne Brown Engineering, January 1989. - 13. Johnson, Nicholas L. The Soviet Year in Space 1987. Colorado Springs, CO: Teledyne Brown Engineering, January 1988. - 14. Johnson, Nicholas L. The Soviet Year in Space 1986. Colorado Springs, CO: Teledyne Brown Engineering, January 1987. - 15. Johnson, Nicholas L. The Soviet Year in Space 1985. Colorado Springs, CO: Teledyne Brown Engineering, January 1986. - 16. Kelso, Major Thomas S., Professor, Operational Sciences Department, School of Engineering, Air Force Ir titute of Technology. Personal Interview. Wright-Patterson AFB, OH, 27 September 1990. - 17. Law, Averill M. and W. David Keaton. Simulation Modeling and Analysis. New York: McGraw-Hill Book Company, 1982. - 18. Longstaffe, Major Roy. Soviet Space Program Handbook. Report Number 88-1610. Air Command and Staff College Study, Air University, Maxwell AFB, AL, April 1988. - 19. Morlan, Major Bruce W., Instructor, Operational Sciences Department, School of Engineering, Air Force Institute of Technology. Personal Interview. Wright-Patterson AFB, OH, 30 July 1990. - 20. Narchal, R. M. and K. Kittappa and P. Bhattacharya. "An Environmental Scanning System for Business Planning," Long Range Planning, 20: 96-105 (December 1987) - 21. Norton, Captain Kenneth, Former Crew Commander, Space Surveillance Center, Cheyenne Moutain Complex. Personal Interview. Wright-Patterson AFB, OH, 5 October 1990. - 22. Owen, Daniel L. "The Use of Influence Diagrams in Structuring Complex Decision Problems," The Principles and Applications of Decision Analysis, Volume II. Menlo Park, CA: Strategic Decision Group, 1984. - 23. Rege, Ashutosh and Alice M. Agogino. "Topological Framework for Representing and Solving Probabilistic Inference Problems in Expert Systems," *IEEEE Transactions on Systems, Man, and Cybernetics, 18*: 402-414 (May-June 1988). - 24. Shachter, Ross D. "Evaluating Influence Diagrams," Operations Research, 34: 871-882 (November-December 1986). - 25. Shachter, Ross D. and C. Robert Kenley. "Gaussian Influence Diagrams," Management Science, 35: 527-550 (May 1989). - 26. Shachter, Ross D. "Probabilistic Inference and Influence Diagrams," Operations Research, 36: 589-604 (July-August 1988). - 27. Tatman, Captain Joseph A. Influence Diagrams: A Tutorial, Class handout distributed in MA 570, Decision Analysis. School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, November 1987. - 28. 1013th Combat Crew Training Squadron. Space Surveillance Center Orbital Analyst Handbook: Version 1.5C. Air Force Space Command, 15 September 1989. ## REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average—hour per response, including the time for reviewing instructions, sear hing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for industrial collection of information informat | 1. AGENCY USE ONLY (Leave blank, |) 2. REPORT DATE
December 1990 | 3. REPORT TYPE AND D
Master's Thesi | | | | | |--|--|---|---|--|--|--| | 4. TITLE AND SUBTITLE | | 5. | FUNDING NUMBERS | | | | | APPLICATION OF INFLUEN SATELLITE MISSIONS | FYING SOVIET | | | | | | | 6. AUTHOR(S) | | | | | | | | Cary C. Chun, Captain, | USAF | | | | | | | 7. PERFORMING ORGANIZATION NAI | 8. | PERFORMING ORGANIZATION
REPORT NUMBER | | | | | | 9. SPONSORING / MONITORING AGEN | NCY NAME(S) AND ADDRESS(ES) | 10 | D. SPONSORING/MONITORING
AGENCY REPORT NUMBER | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | | | | | | | | | | 12a. DISTRIBUTION/AVAILABILITY S | TATEMENT | 1: | 2b. DISTRIBUTION CODE | | | | | Approved for public re | lease; distribution u | nlimited | | | | | | 13. ABSTRACT (Maximum 200 words) | | | | | | | | thereby, reducing the continuous variables a | ncorporate decision to el. Before a Soviet ity distribution allo ion. As the prediction of the successively refuncertainty in the most discrete variables in a single influence. | heory to construct launch occurs, for which successfull ediagram model. | t a
Soviet satellite
rmulation of the
xpert knowledge and | | | | | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | | | | | Influence Diagram, Pro | • • | , Statistical | 127 | | | | | Decision Theory, USSR, | oroits, Spacecraft | | 16. PRICE CODE | | | | | OF REPORT | B. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified | 19. SECURITY CLASSIFICA
OF ABSTRACT
Unclassified | TION 20. LIMITATION OF ABSTRACT UL | | | | 相似用,这个时间是一个时间是一个时间,我们就是一个时间是一个小时间的是一个小时间的是一个小时间的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一